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SOME INTEGRAL TRANSFORMS INVOLVING EXTENDED
GENERALIZED GAUSS HYPERGEOMETRIC FUNCTIONS

JUNESANG CHOI, KRUNAL B. KACHHIA, JYOTINDRA C. PRAJAPATI,
AND SUNIL DUTT PUROHIT

ABSTRACT. Using the extended generalized integral transform given by
Luo et al. [6], we introduce some new generalized integral transforms to
investigate such their (potentially) useful properties as inversion formu-
las and Parseval-Goldstein type relations. Classical integral transforms
including (for example) Laplace, Stieltjes, and Widder-Potential trans-
forms are seen to follow as special cases of the newly-introduced integral
transforms.

1. Introduction, preliminaries, and definitions

Throughout this paper let C, N and Z; denote the sets of complex numbers,
positive and non-positive integers, respectively. Integral transforms have been
widely used in various problems of mathematical physics and applied mathe-
matics (for some recent works, see, e.g., [1, 4, 8, 9]). Integral transforms with
such special functions as (for example) the hypergeometric functions have been
played important roles in solving numerous applied problems. Due mainly to
their demonstrated applications, several generalizations of integral transforms
with hypergeometric functions have been actively investigated. Virchenko and
Ovcharenko [16] presented some new integral transforms with the generalized
confluent hypergeometric function due to Virchenko [15]. Here, in this paper,
using the extended generalized integral transform given by Luo et al. [6], we in-
troduce some new generalized integral transforms to investigate such their (po-
tentially) useful properties as inversion formulas and Parseval-Goldstein type
relations. Classical integral transforms including (for example) Laplace, Stielt-
jes, and Widder-Potential transforms are seen to follow as special cases of the
newly-introduced integral transforms.

Recently, Luo et al. [6] introduced the following extended generalized hy-

qu(a’ﬁ 1) and investigated its various properties. The

pergeometric function
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extended generalized hypergeometric function qu(a’ﬁ w1) is defined by

@Bk ai,...,a = z"
(1.1) Ml b: ;2;7} = ©(n/p.a)
’ n=0 ’

1ye--

(min{R(a), R(3), R(7)} > 0, min {R(x), R(u)} = 0),
whose coefficient © (n/p, q) is determined by

L BIP) (a0 4n,bi—aj41)
(al)n Jl;ll * B(ajy1,bj—aj41)
(p=q+LR(b;) > R(aj1) > 05[]z < 1),
B (a4n,b;—aj)
B(a;,bj—a;)
(p = ¢ R(bj) > R(a;) > 0;z € C),
T P (o, Bsm,1) () . .
1 B (aj+n,bryj—aj)
H (bi)n H . B(ajvbiJrj*aj)] ’
=1 Jj=1
(r=gq—p,p <gR(bry;) > R(a;) > 0;2 € C).

=

(12) ©(n/p,q) =i

Here the generalized Beta function BS™***)(z,y) is defined by (see [6])

1
1.3 BleBirn) ;:/ 1= LR (o B — ) dt
(1.3) v (z,y) : (L=t)" 1k (o B =t

(min{R(y), R(x)} > 0, min{R(z), R(y), R(a), R(B), R(k), R()} > 0)
and the familiar classical Beta function B(a, ) may be recalled as follows (see,
e.g., [12, p. 8, Eq. (43)]):

/1 7l =) tat (R(a) > 0; R(B) > 0)
0

(1.4) B(a, 8) =
I(a) I'(B)
(o +f)
The special case of the function (1.1) when v = 0 is seen to reduce to the

generalized hypergeometric function ,Fj, with p numerator and ¢ denominator
parameters defined by (see, e.g., [10, 12])

(a, B € C\Zy).

ar, ..., Ap;

qu|:b1,... 'Z}qu(alv""ap;blv---,bq;z)

(1.5) N .
:Z ( 1)n ( p)n

(bl)n T (bq)n Hv

where, in terms of the Gamma function I'(z) (see, e.g., [12, Section 1.1]) whose
Euler’s integral is given by

(1.6) [(z) = /OOO el dt (R(z) > 0),
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the widely-used Pochhammer symbol (), (A, v € C) is defined, in general, by
(see, for details, [13]; see also [12])

_I'(A+v)
W ==y~

N (v=0; AeC\ {0))
{)\()\+1)---()\+n—1) (v=neN; AeC).

The special case of the function (1.3) when v = 0 would reduce immediately
to the Beta function B(z,y) in (1.4).

It is also noted that for p = 2 and ¢ = 1 the definitions in (1.1) would reduce
immediately to the extended hypergeometric type function defined as follows
(see [6]):

(AeC\Zg)
(1.7)

oo (0, B375,) n
; b B (b+n,c—0)z

1 plagimp | @bl S (a), 22 )

(1.8) 2 { c 57 nzo(“) B(b,c—b) n!

(R(7) > 0,%(k) > 0, u > 0;min{R(a),R(B)} > 0; R(c) > R(D) >0, |z|<1).
The Mellin transform of f(z) is defined in the following way (see, e.g., [11]):

(1.9) M{f(x);s} = /OOO flx)x*~! du,

provided the integral converges.

Our investigation needs to recall Hadamard product (see, e.g., [7]) which is
used to decompose a newly-emerged function into two known functions: Let
f(z) == 30" ganz™ and g(z) :== >0~ ;bnz" be two power series whose radii
of convergence are denoted by R and Ry, respectively. Then their Hadamard
product is the power series defined by

(1.10) (fxg)(z)= Zanbn 2",
n=0

The radius of convergence R of the power series (1.10) is easily seen to satisfy
Ry - Ry < R. In particular, if one of the power series is an entire function, then
the Hadamard product series defines an entire function, too. For example, the

function s F s(i’rﬁ 1) (see [6]) is decomposed as follows: For all z € C,
85K, L1y..-, T
S [ e ;zw}
LA ST
(1.11) .
- F 5 2 % F (a0, B5k,1) L1y, Ts 2 )
! T|:y1a < Yrs :| e Yltrye - Ystr 7

The following Laplace transforms are required in our investigation (see, e.g.,
[2, pp. 159-160, Entries (81) and (82)]):

Elo ) sinfor) sin(ioin) = w5 O

(R(u) > [S(+a + B)])

(1.12)
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and

g L) cosni = g arctan
(R(u) > [S(£a + B)]),

where the Laplace transform of a function f is defined by

(1.14) C{f(x)iu) = / T e f(a)de,

provided the integral converges.

Here we define some new generalized integral transforms by using the ex-
tended generalized Gauss hypergeometric function in (1.1).

Consider the following generalization of some classical transforms:

119) L@k} = )= [ e nEe | feja,
0

where 1F1(a’5 k) { CCL ;z;'y} is the extended generalized Gauss hypergeometric

function in (1.1). The special case of (1.15) when b = 0 is seen to reduce to
the classical Laplace transform (1.14).
We define the following integral transform:

Splf(@);y}

(L16) 1 [ (@) s [ ma o x )
= r<p>/o @ty 20 [ c ’b<x+y>’”] i

a, Bk a,b
Fl( =g} 1”)
(&

where 325 7] is the extended generalized Gauss hypergeomet-

ric function in (1.8). The case b = 0 of (1.16) yields the generalized Stieltjes
integral transform (see [2, 14])

(1.17) Sp{f(@);y} = F(lp) /OOO (xffy))p

We define the following generalized potential integral transform:
pm,l{f(z>a y}
1.18 00 pm—1 . m
( ) ::/ ™1 f(x) 2F1(a,g,n,u) [ 1;a ;—b( x ) W} iz,
0

where m € N and the case b = 0 of which gives the known potential integral
transform (see [5]).
2. Inversion formulae

In this section, inversion formulae for the integral transforms (1.15), (1.16)
and (1.18) are investigated.
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Lemma 1. Let R(y) > 0, min{R(a), R(5), R(k), R(p)} > 0, R(c) > R(a) > 0,
and |b] < 1. Then we have
(2.1)

/ vsflefvlFl(a’Bm’“) { (Cl ;bv;’y] dv =T(s) gFl(a”ﬁm’”) [ s,ca ;—b; 'y].
0
Proof. We find from (1.1) and (1.2) that
/ 057167U1F1(Q’BW7M) { ¢ ;bv;'y} dv
0 c

00 > B(a’ﬁ;”’“)(a +n.c— a) (—b’l})n
s—1_—wv 2 )
= d

/0 voe Z B(a,c—a) n! v

n=0

_ i B»(YQ’B;H#) (a =+ n,c— a) (7b)n /OO Us+n71677j dv
B(a,c—a) n! o '

n=0

Then applying the Gamma function (1.6) to the last integral gives

/ ,UsflefvlFl(OlaB?ﬁvM) |: a ;b’U;’)/:| dv
0 C

2.2 o a,Bik
Ry,

B = B(a,c—a) n! '
Finally, use of (1.7) yields the desired result (2.1). O

Theorem 2. The inversion formula for the generalized integral transform
(1.15) is given in the following form:

(2.3) LY ()} = fx) = / " (ay) ™ G () Olay) dy,
where
o+i0o SCS ) s.a
0) =5 [ gy ds €)= D) 2F7 ) | 50 i,

and G*(y) = L*{f(z);y}.

Proof. Applying the Mellin integral transform (1.9) to (1.15) and using Lemma
1, we get

MUE(f) )5} = MU @)i1 =) M{ e r 070 [ 4 a1 s
= M{f(x);1— s} /000 stlefl/lFl(Ohﬁ;I{”u,) { (z ; —bu;'y} v

=T(s) M{f(z);1— s} QF(>Frm) [ S’ca ;—bw]
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Using the inversion formula for Mellin integral transform (see [11]) and changing
the order of integration, we obtain

1 o+i00 . B s,a —1 .
f(x)= 5 271 {F(s)QFl( Bire) [ ;—b;v}} M{G*(y); s} ds
Tt Jo—ioco ¢
1 oo s— a,Bik, S, a -
- 2m o—1i00 ! 1 {F(S)QFl( ; |: ¢ ; b’7:| }

x (/OOO v G (y) dy) ds. _

Lemma 3. Let R(vy) > 0, min{R(«), R(B), R(k), R(p)} > 0, R(c) > R(a) > 0,
and ‘b (#_y)‘ < 1. Then we obtain

/ xpflef(erz)lel(a,ﬁ;mu) [ a ;—bxy;v] dx
(2.4) 0 ‘

r a, Bk 5
_ W) g [ pa (v T
(y +2)P c y+z

Proof. Let L be the left-hand side of (2.4). Using (1.1) and (1.2), we have

oo > B(a’ﬁ”{’“)(a +n,c—a) (—bxy)™
I = p—1,—(y+z)z v ’ d
/0 o Z B(a,c—a) n! “

n=0

_§§B$@W%a+mc@(bw"/m pin1, (4o
= T e dzx.
= B(a,c—a) n! 0

From the definition of Laplace transform (1.14) or the Gamma function (1.6),
we obtain

L—533$ﬁwm@+nﬂ*aﬂfww I(p+n)
S22 Bac-a  nl G
which, in view of (1.7), leads to the right-hand side of (2.4). O

Theorem 4. The inversion formula for the generalized integral transform
(1.16) is given in the following form:

(2.5) fly) =T@)L"Ha' 7L h(2):x )y},

where

~ o+1i00
h(z) = S,{f(y);2} and L '{h(z);2}= L/ h(z)e** dz.

210 Jo_ioo
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Proof. Integrating both sides of (2.4) with respect to the variable y from 0 to
00, we have

1 [ o0 ‘
p—1_—(y+z)z (a,B5k,1) | @ | .
—F(p)/o f(w) (/O Pl W I [ . b:cy,v] dz) dy
:/°° J) | plasmm { p.a .b< y >V] dy.
o (y+zp ! c ' \y+z/)

Changing the order of integration in (2.6) yields
Sp{f(); 2}

1 /°° 1 (/‘” - (aﬁ'nu)[a
= — P e e~y FyoT ; —bxy;v|dy | dx
I'(p) Jo 0 Whhy ¢

(27) 1 o p—1_—zzx * .
- 75 / e (L f(y); ) do

L p—1 px* sl o
Zmﬁ{x L{f(y);x}; 2}

From (2.7), we obtain
(2.8) L{f(y)ia} =T(p) &' ~P L7H{h(2); 2},

which, upon taking inverse of the transform £* given in Theorem 2, leads to
the desired result (2.5). O

Lemma 5. Let ®(v) > 0, min{R(a), R(B), R(k), R(x)} > 0, R(c) > R(a) > 0,
|| <1 and m € N. Then we have

oo sl (a,B; 1,a —b
F (e ,'11#) 9 . . d
/0 L+om 21 [ c ’1+vm’v] Y

D1 — 2)1(2 . -2
_ ( m) (m) {lFl(oz,B,fi,M) |: a ;—b;’y:| «1F) |: 1 _m ;—b:|}.
m C

(2.6)

(2.9)

Proof. Let L be the left-hand side of (2.9). Using (1.8), we have

[e%S) —b

oo sl B(Q’Bm’“)(a +n,c—a) (=m=)"
2.10 L= 1) — ’ Lo .
(2.10) /0 1+0m nZO( ) B(a,c—a) n! Y

Changing the order of integration and summation in (2.10), which is guaranteed
under the given conditions, we get
(2.11)

& B(‘%B?"%M) _ A [e%S) s—1 1 n
L:Z(l)n gl (a+n,c—a)(=b) / v do
B(a,c—a) nl Jo 1+ovm \140m
n=0
Setting 1/(1 4+ v™) =t in the integral in (2.11) and using (1.4), we obtain

M1-20(2) &, B atnc—a) (-0 T(1-2+n)
Z(l)n B(a(,c a) ( n!) I'(l—2)C(n+1)

L =
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which, in view of (1.11), leads to the right-hand side of (2.9). O

Theorem 6. The inversion formula for the generalized potential integral trans-
form (1.18) is given in the following form:

(2.12) fz) = m/ooo y ' Fy) R (%) dz,
where |
F) = Pl B = [ 2o
£(s) = T )T i)r(%) {1F1(a’ﬁ;”’“) [ . ;—bw] *1Fp { b ;—b} }

Proof. Applying the Mellin integral transform (1.9) to (1.18) and using (2.9),
we obtain

M{ P {f(x);y}; s}
_ . vl s [ La b
M{f(u),S}M{1+Um2F1 : |: c ’1+,Um’7:|’s}
= M{f(u);s} w {1F1(a,ﬁ;n,u) { Ccl ;—b;'y} *1F0[ 1:% ;—b}},

which gives

(2.13) M{f(x);s} =mé&(s) ™ M{Pua{f(2);y};s}.
Applying the inversion formula for the Mellin integral transform (see [11]) to
(2.13) yields the desired result (2.12). O

3. Parseval-type relations

In this section, some Parseval-type relations (see [3]) for the generalized
integral transforms are considered.

Theorem 7. The following equality holds true:

(3.1) | otw e sy du= [ 1) £ (gturit) o
0 0
provided that the involved integrals exist and converge absolutely.

Proof. We find from (1.15) that

/0 " gw) L{F(0): ) du

= / g(u) (/ efutlFl(a’ﬁm’“) [ (Cl ;—but;v] f(t)dt) du
0 0

= / f@) (/ e_“tlFl(a’ﬁ;k"’“) [ CCL ;—but;v] g(u)du) dt
0 0
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_ / ) £ {glu)s ) dr.
Let

O(u) :=ul*{f(t);u} and W(t):=tL{g(u);t}.
Then, for b =0 in (1.15), we obtain the following well known result (see [2]):

(3.2) /0 T 2ulgl) g, /O YO0

u

Lemma 8. The following equality holds true:
(3.3) L{L {g(u);z};y} = Prafg(u);y},
provided that the involved integral transforms converge.

Proof. Using (1.15) and (1.18), we obtain
L{Lg(uw);x}y)

= /OOO e Lg(u);z} dx

— / e %Y </ e*“lel(a’ﬂm’”) [ “ ;buz;’y} g(u)du) dx
0 0 ¢

= / (/ e*(“er)lel(a’ﬁ;k"’“) [ ¢ ;—buw;v} g(u)dm) du.
0 0 ¢

Considering (2.4), we get
* o g(u) (avﬁﬂ‘h#) 1) a U
3.4) L{L sxhiyt = ——— o F ;—b iy| d
( ) { {g(u)7$}7y} /0 y+u2 1 c y+u 3 Y u,
which, upon using (1.18), yields the desired result (3.3). O

Theorem 9. The following Parseval-Goldstein type identity holds true:
65) [ clbrelE gsat de= [ hG) Pudoyis) dy
0 0

Proof. Let L be the left-hand side of (3.5). Then we have

L:/ </ e "h(y) dy> </ e ur 1F1(Q’Bm’“){ a ;bu:c;'y] g(u) du> dx
0 0 0 ¢
:/ h(y) (/ e~ (/ e_“lel(a’ﬁm’“)[ “ ;—bux;v] g(u) du) dm) dy
0 0 0 ¢

= [ n ([ e tatwsan) i ) ay

= [ nw (ete awia) dn
0
which, in view of (3.3), leads to the right-hand side of (3.5). O
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Theorem 10. The following Parseval-Goldstein type equality holds true:

30 [ LU+ HE (ow)ia) do = LGP {g) )i 2),
provided the integrals involved exist and converge absolutely.

Proof. Setting h(y) = e ¥*f(y) in (3.5) and using the identity

(3.7) L{e ™ f(y)ix} = L{f(y); o + 2},

one can easily obtain (3.6). O

4. Extended integral transforms

Here three £* transforms and an integral of £* transform are considered as
in the following theorem.

Theorem 11. The following formulas hold true:

(i) Let a, B, v, &, u, p € C with min {R(a), N(B), R(7), R(p)} > 0 and
min {R(x), R(px)} > 0. Then the following formula holds true:

r .
(4.1) Lz y} = (o) Q (P [ p,ca ;b;v]

yP
(ii) The following formula holds true:

0

c

(iii) The following formulas hold true:

/ L*{e " sinax cosfx;y} dy
0

1 .
=3 L P Pn) { 1,ca ;bW} arctan

(4.3)

20
uZ — a2 + B2

and
/ L*{e ™" sinax sinfz;y} dy
0

_ L asmw | La w? + (a+B)?
= — 2F1 c ,—b,’y hlm

(4.4)

4

Proof. We begin by proving (4.1). Using (1.1) and (1.8), we have

(4.5) E*{xpfl;y} :/ e*zylFl(a’ﬁm’“) [ CCL ;—bxy;v] 2P~ dz.
0

By changing the order of integration and summation, we obtain

o0

B(‘%B?’%M)(a +n,c— a) (_by)n e}
* -1, _ Y ) —x +n—1
(4.6) Lz 5y} = E Bla,c—a) p /0 e~y da.

n=0



INTEGRAL TRANSFORMS 789

Using (1.6) or (1.14), we get

B (a4 e — a) (—by)" T(p+n)
B(a,c—a) n! yptn

@7 Lyl =>
n=0

which, in view of (1.7), yields the right-hand side of (4.1).
To prove (ii), let L be the left-hand side of (4.2). We find from (1.15) that

L :/ (/ e*zylFl(a’ﬁ;k"’“) [ CCL ;—bxy;v] e “g(x) d:z:) dy
0 0

:/ (/ e_mylFl(a’ﬁ;k"’“) [ “ ;—bxy;v] dy) g(x)e ""d.
0 0 ¢

Setting 2y = v and using (2.1), we obtain

(48) I = QFl(aﬁ;K,H) |: La ,7b, 'Y:| / e T (:C) dSC,
C 0 T

which, in view of (1.14), leads to the right-hand side of (4.2).

Lastly we prove (iii). Replacing g(z) in (4.2) by sin(ax)cos(fz) and
sin(az) sin(fBx), and using (1.13) and (1.12), respectively, we can obtain the
desired results (4.3) and (4.4). O
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