• Title/Summary/Keyword: Stack Temperature

Search Result 343, Processing Time 0.024 seconds

Fabrication and Estimation of an Ultrafine Grained Complex Aluminum Alloy Sheet by the ARB Process Using Dissimilar Aluminum Alloys (이종 알루미늄의 ARB공정에 의한 초미세립 복합알루미늄합금판재의 제조 및 평가)

  • Lee, Seong-Hee;Kang, Chang-Seog
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.893-899
    • /
    • 2011
  • Fabrication of a complex aluminum alloy by the ARB process using dissimilar aluminum alloys has been carried out. Two-layer stack ARB was performed for up to six cycles at ambient temperature without a lubricant according to the conventional procedure. Dissimilar aluminum sheets of AA1050 and AA5052 with thickness of 1 mm were degreased and wire-brushed for the ARB process. The sheets were then stacked together and rolled to 50% reduction such that the thickness became 1 mm again. The sheet was then cut into two pieces of identical length and the same procedure was repeated for up to six cycles. A sound complex aluminum alloy sheet was successfully fabricated by the ARB process. The tensile strength increased as the number of ARB cycles was increased, reaching 298 MPa after 5 cycles, which is about 2.2 times that of the initial material. The average grain size was $24{\mu}m$ after 1 cycle, and became $1.8{\mu}m$ after 6 cycles.

Improved Distribution of Threshold Switching Device by Reactive Nitrogen and Plasma Treatment (반응성 질소와 플라즈마 처리에 의한 문턱 스위칭 소자의 개선)

  • Kim, DongSik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.172-177
    • /
    • 2014
  • We present on a threshold switching device based on AsGeTeSi material which is significantly improved by two $N_2$ processes: reactive $N_2$ during deposition, and $N_2$ plasma hardening. The introduction of N2 in the two-step processing enables a stackable and thermally stable device structure, is allowing integration of switch and memory devices for application in nano scale array circuits. Despite of its good threshold switching characteristics, AsTeGeSi-based switches have had key issues with reliability at a high temperature to apply resistive memory. This is usually due to a change in a Te concentration. However, our chalconitride switches(AsTeGeSiN) show high temperature stability as well as high current density over $1.1{\times}10^7A/cm^2$ at $30{\times}30(nm^2)$ celll. A cycling performance of the switch was over $10^8$ times. In addition, we demonstrated a memory cell consisted of 1 switch-1 resistor (1S-1R) stack structure using a TaOx resistance memory with the AsTeGeSiN select device.

Performance Analysis of Hybrid SOFC/Uncooled GT System for Marine Power Applications (선박동력용 SOFC/GT(무냉각) 하이브리드시스템의 성능 평가)

  • Kim, Myoung-Hwan;Kil, Byung-Lea
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1050-1060
    • /
    • 2012
  • As an approach to high-efficiency of SOFC system, SOFC/GT Hybrid system is effective. However, if the output size of the system belongs to the marine class of dozens MWs, the introduction of the cooling system of GT system, which is used as sub-system, makes its related devices complicated and also makes its control difficult. Accordingly, for the marine use, SOFC/GT (non-cooling)Hybrid system looks more suitable than SOFC/GT(cooling)Hybrid system. This study established the SOFC/GT (non-cooling)Hybrid system, and examined the operating temperature & current density of the stack for the system, pressure ratio of the gas turbine, the influence of TIT(Turbine Inlet Temperature) on system performance, etc. through the simulation process. Through this research process, this study was able to confirm that electrical efficiency rises in spite of the increase in the required power for the air compressor, and there exists a limited range of temperatures for operation in TIT.

Application of SFCL on Bus Tie for Parallel Operation of Power Main Transformers in a Fuel Cell Power Systems

  • Chai, Hui-Seok;Kang, Byoung-Wook;Kim, Jin-Seok;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2256-2261
    • /
    • 2015
  • In the power plant using high temperature fuel cells such as Molten Carbonate Fuel Cell(MCFC), and Solid Oxide Fuel Cell(SOFC), the generated electric power per area of power generation facilities is much higher than any other renewable energy sources. - High temperature fuel cell systems are capable of operating at MW rated power output. - It also has a feature that is short for length of the line for connecting the interior of the generation facilities. In normal condition, these points are advantages for voltage drops or power losses. However, in abnormal condition such as fault occurrence in electrical system, the fault currents are increased, because of the small impedance of the short length of power cable. Commonly, to minimize the thermal-mechanical stresses on the stack and increase the systems reliability, we divided the power plant configuration to several banks for parallel operation. However, when a fault occurs in the parallel operation system of power main transformer, the fault currents might exceed the interruption capacity of protective devices. In fact, although the internal voltage level of the fuel cell power plant is the voltage level of distribution systems, we should install the circuit breakers for transmission systems due to fault current. To resolve these problems, the SFCL has been studied as one of the noticeable devices. Therefore, we analyzed the effect of application of the SFCL on bus tie in a fuel cell power plants system using PSCAD/EMTDC.

Pt/Al Reaction Mechanism in the FeRAM Device Integration (FeRAM 소자 제작 중에 발생하는 Pt/Al 반응 기구)

  • Cho Kyoung-Won;Hong Tae-Whan;Kweon Soon-Yong;Choi Si-Kyong
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.688-695
    • /
    • 2004
  • The capacitor contact barrier(CCB) layers have been introduced in the FeRAM integration to prevent the Pt/Al reaction during the back-end processes. Therefore, the interdiffusion and intermetallic formation in $Pt(1500{\AA})/Al(3000{\AA})$ film stacks were investigated over the annealing temperature range of $100\sim500^{\circ}C$. The interdiffusion in Pt/Al interface started at $300^{\circ}C$ and the stack was completlely intermixed after annealing over $400^{\circ}C$ in nitrogen ambient for 1 hour. Both XRD and SBM analyses revealed that the Pt/Al interdiffusion formed a single phase of $RtAl_2$ intermetallic compound. On the other hand, in the presence of TiN($1000{\AA}$) barrier layer at the Pt/Al interface, the intermetallic formation was completely suppressed even after the annealing at $500^{\circ}C$. These were in good agreement with the predicted effect of the TiN diffusion barrier layer. But the conventional TiN CCB layer could not perfectly block the Pt/Al reaction during the back-end processes of the FeRAM integration with the maximum annealing temperature of $420^{\circ}C$. The difference in the TiN barrier properties could be explained by the voids generated on the Pt electrode surface during the integration. The voids were acted as the starting point of the Pt/Al reaction in real FeRAM structure.

Numerical Analysis on Performance Changes of the Tubular SOFCs according to Current Collecting Method (전류집전 방법에 따른 원통형 고체산화물 연료전지의 성능 변화 수치해석)

  • Yu, Geon;Park, Seok-Joo;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Song, Rak-Hyun;Shin, Dong-Ryul;Kim, Ho-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.129-138
    • /
    • 2011
  • Performance changes of an anode-supported tubular SOFC including current collectors are analyzed at different current collecting methods using numerical simulation. From the two dimensional numerical model of the solid oxide fuel cell with nickel felts as anodic current collectors and silver wires as cathodic ones, the performance curves and the distributions of temperature, concentration, current density are obtained. Also, the voltage loss of the cell is divided into three parts: activation loss, concentration loss and ohmic loss. The results show that the performance change of the cell is dominantly influenced by the ohmic loss. Although the temperature and concentration distributions are different, the total activation loss and concentration loss are nearly same. And the ohmic loss is divided into each parts of the cell components. The ohmic loss of the anodic current collectorreaches about 60~80% of the cell's total ohmic loss. Therefore, the reduction of the ohmic loss of the anodic current collector is very important for stack power enhancement. It is also recommended that the load should be connected to the both ends of the anodic current collector.

Development of Thermoplastic Carbon Composite Bipolar Plates for High-temperature PEM Fuel Cells (고온 양성자 교환막 연료전지용 열가소성 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo;Kim, Minkook;Lee, Dai Gil
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.243-248
    • /
    • 2016
  • Although thermoset carbon fiber composite bipolar plates not only have high mechanical properties but also high corrosion resistance in acid environment, high manufacturing cost and low bulk electrical conductivity are the biggest obstacle to overcome. In this research, thermoplastic polymer is employed for the matrix of carbon composite bipolar plate to increase both the manufacturing productivity and bulk electric conductivity of the bipolar plate. In order to increase the electrical conductivity and strength, plain type carbon fabric rather than chopped or unidirectional fibers is used. Also nano particles are embedded in the thermoplastic matrix to increase the bulk resistance of the bipolar plate. The area specific resistance and the mechanical strength of the developed bipolar plate are measured with respect to the environmental temperature and stack compaction pressure.

Fabrication of Cu2ZnSnS4 Films by Rapid Thermal Annealing of Cu/ZnSn/Cu Precursor Layer and Their Application to Solar Cells

  • Chalapathy, R.B.V.;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae;Kwon, HyukSang
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.82-89
    • /
    • 2013
  • $Cu_2ZnSnS_4$ thin film have been fabricated by rapid thermal annealing of dc-sputtered metal precursor with Cu/ZnSn/Cu stack in sulfur ambient. A CZTS film with a good uniformity was formed at $560^{\circ}C$ in 6 min. $Cu_2SnS_3$ and $Cu_3SnS_4$ secondary phases were present at $540^{\circ}C$ and a trace amount of $Cu_2SnS_3$ secondary phase was present at $560^{\circ}C$. Single-phase large-grained CZTS film with rough surface was formed at $560^{\circ}C$. Solar cell with best efficiency of 4.7% ($V_{oc}=632mV$, $j_{sc}=15.8mA/cm^2$, FF = 47.13%) for an area of $0.44cm^2$ was obtained for the CZTS absorber grown at $560^{\circ}C$ for 6 min. The existence of second phase at lower-temperature annealing and rough surface at higher-temperature annealing caused the degradation of cell performance. Also poor back contact by void formation deteriorated cell performance. The fill factor was below 0.5; it should be increased by minimizing voids at the CZTS/Mo interface. Our results suggest that CZTS absorbers can be grown by rapid thermal annealing of metallic precursors in sulfur ambient for short process times ranging in minutes.

Electrical Conduction Mechanism in the Insulating TaNx Film (절연성 TaNx 박막의 전기전도 기구)

  • Ryu, Sungyeon;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.32-38
    • /
    • 2017
  • Insulating $TaN_x$ films were grown by plasma enhanced atomic layer deposition using butylimido tris dimethylamido tantalum and $N_2+H_2$ mixed gas as metalorganic source and reactance gas, respectively. Crossbar devices having a $Pt/TaN_x/Pt$ stack were fabricated and their electrical properties were examined. The crossbar devices exhibited temperature-dependent nonlinear I (current) - V (voltage) characteristics in the temperature range of 90-300 K. Various electrical conduction mechanisms were adopted to understand the governing electrical conduction mechanism in the device. Among them, the PooleFrenkel emission model, which uses a bulk-limited conduction mechanism, may successfully fit with the I - V characteristics of the devices with 5- and 18-nm-thick $TaN_x$ films. Values of ~0.4 eV of trap energy and ~20 of dielectric constant were extracted from the fitting. These results can be well explained by the amorphous micro-structure and point defects, such as oxygen substitution ($O_N$) and interstitial nitrogen ($N_i$) in the $TaN_x$ films, which were revealed by transmission electron microscopy and UV-Visible spectroscopy. The nonlinear conduction characteristics of $TaN_x$ film can make this film useful as a selector device for a crossbar array of a resistive switching random access memory or a synaptic device.

Conversion Rate of Gaseous Ammonia to Particulate Ammonium During Atmospheric Transport (대기 수송중 암모니아의 암모늄염으로의 전환속도)

  • Kim Hui-Kang;Y. Hashimoto;Yong-Kuen Lee
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.88-94
    • /
    • 1982
  • The concentrations of gaseous ammonia and particulate ammonium emitted from a urea plan were measured, and the conversion rate of ammonia to ammonium was estimated. The conversion of ammonia to ammonium has two stages with transport time in the atmosphere. In the initial 15min the conversion rate was 3.2% min$^{-1}$, and thereafter 0.26% min$^{-1}$. The high conversion rate of ammonia to ammonium at the initial period of it's transport might be due to the dissolution of ammonia into water droplets formed by the decrease in temperature of the stack effluent. The concentration of ammonium is further increased by the decomposition of urea in alkaline droplet formed. Half-lives of ammonia gas at initial and latter slag were 16 min and 192 min respectively. No correlation of particulate ammonium concentration to temperature, relative humidity, and concentrations of sulfur dioxide, nitrogen oxides and airborne particulate matter were found in this field measurement.

  • PDF