Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.11.893

Fabrication and Estimation of an Ultrafine Grained Complex Aluminum Alloy Sheet by the ARB Process Using Dissimilar Aluminum Alloys  

Lee, Seong-Hee (Department Of Advanced Materials Science And Engineering, Mokpo National University)
Kang, Chang-Seog (Korea Institute Of Industrial Technology (Kitech), Automotive Components Center)
Publication Information
Korean Journal of Metals and Materials / v.49, no.11, 2011 , pp. 893-899 More about this Journal
Abstract
Fabrication of a complex aluminum alloy by the ARB process using dissimilar aluminum alloys has been carried out. Two-layer stack ARB was performed for up to six cycles at ambient temperature without a lubricant according to the conventional procedure. Dissimilar aluminum sheets of AA1050 and AA5052 with thickness of 1 mm were degreased and wire-brushed for the ARB process. The sheets were then stacked together and rolled to 50% reduction such that the thickness became 1 mm again. The sheet was then cut into two pieces of identical length and the same procedure was repeated for up to six cycles. A sound complex aluminum alloy sheet was successfully fabricated by the ARB process. The tensile strength increased as the number of ARB cycles was increased, reaching 298 MPa after 5 cycles, which is about 2.2 times that of the initial material. The average grain size was $24{\mu}m$ after 1 cycle, and became $1.8{\mu}m$ after 6 cycles.
Keywords
accumulative roll-bonding(ARB); ultra grain refinement; mechanical property; complex aluminum alloy; electron back scattering diffraction(EBSD);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, Scr. Mater. 39, 1221 (1998).   DOI   ScienceOn
2 H. W. Kim, S. H. Jin, and S. B. Kang, J. Kor. Inst. Met. Mater. 39, 546 (2001).
3 Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Acta. Mater. 47, 579 (1999).   DOI   ScienceOn
4 N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa, Scrip. Mater. 40, 795 (1999).   DOI   ScienceOn
5 S. H. Lee, N. Tsuji, H. Utsunomiya, T. Sakai, and Y. Saito, Scrip. Mater. 46, 281 (2002).   DOI   ScienceOn
6 S. H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya, Mater. Sci. Eng. A325, 228 (2002).
7 S. H. Lee, J. Cho, S. Z. Han, and C. Y. Lim, Kor. J. Mater. Res. 15, 240 (2005).   DOI   ScienceOn
8 S. H. Lee, J. Cho, C. H. Lee, S. Z. Han, and C. Y. Lim, Kor. J. Mater. Res. 15, 555 (2005).   DOI   ScienceOn
9 S. H. Lee, S. Z. Han, and C. Y. Lim, Kor. J. Mater. Res. 16, 592 (2006).   DOI   ScienceOn
10 H. R. Song, Y. S. Kim, and W. J. Nam, Met. Mater. Int. 12, 7 (2006).   DOI   ScienceOn
11 C. Y. Lim, S. Z. Han, and S. H. Lee, Met. Mater. Int. 12, 225 (2006).   DOI   ScienceOn
12 N. Takata, S. H. Lee, and N. Tsuji, Materials Letters 63, 1757 (2009).   DOI   ScienceOn
13 S. H. Lee, J. Kor. Inst. Met. & Mater. 43, 786 (2001).
14 Y. H. Jang, S. S. Kim, S. Z. Han, C. Y. Lim, and M. Goto. Met. Mater. Int. 14, 171 (2008).   DOI   ScienceOn
15 A. Mozaffari, H. D. Manesh, and K. Janghorban, J. Alloys And Compounds 489, 103 (2010).   DOI   ScienceOn
16 M. Eizadjou, A. K. Talachi, H. D. Manesh, H. S. Shahabi, and K. Janghorban, Composite Sci. Tech. 68, 2003 (2008).   DOI   ScienceOn