DOI QR코드

DOI QR Code

Fabrication and Estimation of an Ultrafine Grained Complex Aluminum Alloy Sheet by the ARB Process Using Dissimilar Aluminum Alloys

이종 알루미늄의 ARB공정에 의한 초미세립 복합알루미늄합금판재의 제조 및 평가

  • Lee, Seong-Hee (Department Of Advanced Materials Science And Engineering, Mokpo National University) ;
  • Kang, Chang-Seog (Korea Institute Of Industrial Technology (Kitech), Automotive Components Center)
  • 이성희 (국립목포대학교 신소재공학과) ;
  • 강창석 (한국생산기술연구원)
  • Received : 2011.08.08
  • Published : 2011.11.25

Abstract

Fabrication of a complex aluminum alloy by the ARB process using dissimilar aluminum alloys has been carried out. Two-layer stack ARB was performed for up to six cycles at ambient temperature without a lubricant according to the conventional procedure. Dissimilar aluminum sheets of AA1050 and AA5052 with thickness of 1 mm were degreased and wire-brushed for the ARB process. The sheets were then stacked together and rolled to 50% reduction such that the thickness became 1 mm again. The sheet was then cut into two pieces of identical length and the same procedure was repeated for up to six cycles. A sound complex aluminum alloy sheet was successfully fabricated by the ARB process. The tensile strength increased as the number of ARB cycles was increased, reaching 298 MPa after 5 cycles, which is about 2.2 times that of the initial material. The average grain size was $24{\mu}m$ after 1 cycle, and became $1.8{\mu}m$ after 6 cycles.

Keywords

Acknowledgement

Supported by : 전남과학기술진흥센터

References

  1. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, Scr. Mater. 39, 1221 (1998). https://doi.org/10.1016/S1359-6462(98)00302-9
  2. H. W. Kim, S. H. Jin, and S. B. Kang, J. Kor. Inst. Met. Mater. 39, 546 (2001).
  3. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Acta. Mater. 47, 579 (1999). https://doi.org/10.1016/S1359-6454(98)00365-6
  4. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa, Scrip. Mater. 40, 795 (1999). https://doi.org/10.1016/S1359-6462(99)00015-9
  5. S. H. Lee, N. Tsuji, H. Utsunomiya, T. Sakai, and Y. Saito, Scrip. Mater. 46, 281 (2002). https://doi.org/10.1016/S1359-6462(01)01239-8
  6. S. H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya, Mater. Sci. Eng. A325, 228 (2002).
  7. S. H. Lee, J. Cho, S. Z. Han, and C. Y. Lim, Kor. J. Mater. Res. 15, 240 (2005). https://doi.org/10.3740/MRSK.2005.15.4.240
  8. S. H. Lee, J. Cho, C. H. Lee, S. Z. Han, and C. Y. Lim, Kor. J. Mater. Res. 15, 555 (2005). https://doi.org/10.3740/MRSK.2005.15.9.555
  9. S. H. Lee, S. Z. Han, and C. Y. Lim, Kor. J. Mater. Res. 16, 592 (2006). https://doi.org/10.3740/MRSK.2006.16.9.592
  10. H. R. Song, Y. S. Kim, and W. J. Nam, Met. Mater. Int. 12, 7 (2006). https://doi.org/10.1007/BF03027516
  11. C. Y. Lim, S. Z. Han, and S. H. Lee, Met. Mater. Int. 12, 225 (2006). https://doi.org/10.1007/BF03027535
  12. N. Takata, S. H. Lee, and N. Tsuji, Materials Letters 63, 1757 (2009). https://doi.org/10.1016/j.matlet.2009.05.021
  13. S. H. Lee, J. Kor. Inst. Met. & Mater. 43, 786 (2001).
  14. Y. H. Jang, S. S. Kim, S. Z. Han, C. Y. Lim, and M. Goto. Met. Mater. Int. 14, 171 (2008). https://doi.org/10.3365/met.mat.2008.04.171
  15. M. Eizadjou, A. K. Talachi, H. D. Manesh, H. S. Shahabi, and K. Janghorban, Composite Sci. Tech. 68, 2003 (2008). https://doi.org/10.1016/j.compscitech.2008.02.029
  16. A. Mozaffari, H. D. Manesh, and K. Janghorban, J. Alloys And Compounds 489, 103 (2010). https://doi.org/10.1016/j.jallcom.2009.09.022