DOI QR코드

DOI QR Code

Improved Distribution of Threshold Switching Device by Reactive Nitrogen and Plasma Treatment

반응성 질소와 플라즈마 처리에 의한 문턱 스위칭 소자의 개선

  • Kim, DongSik (Dept. of Computer Systems & Engineering, Inha Technical College)
  • 김동식 (인하공업전문대학 컴퓨터시스템과)
  • Received : 2014.07.19
  • Accepted : 2014.07.30
  • Published : 2014.08.25

Abstract

We present on a threshold switching device based on AsGeTeSi material which is significantly improved by two $N_2$ processes: reactive $N_2$ during deposition, and $N_2$ plasma hardening. The introduction of N2 in the two-step processing enables a stackable and thermally stable device structure, is allowing integration of switch and memory devices for application in nano scale array circuits. Despite of its good threshold switching characteristics, AsTeGeSi-based switches have had key issues with reliability at a high temperature to apply resistive memory. This is usually due to a change in a Te concentration. However, our chalconitride switches(AsTeGeSiN) show high temperature stability as well as high current density over $1.1{\times}10^7A/cm^2$ at $30{\times}30(nm^2)$ celll. A cycling performance of the switch was over $10^8$ times. In addition, we demonstrated a memory cell consisted of 1 switch-1 resistor (1S-1R) stack structure using a TaOx resistance memory with the AsTeGeSiN select device.

두 가지 $N_2$ 프로세스(성장 중 반응성 질소 그리고 질소 플라즈마 경화)에 의해 특별히 개선된 AsGeTeS 위에 만들어진 문턱 스위칭 소자를 제시하고자 한다. 적층과 열적 안정적인 소자 구조가 가능한 두 스텝 프로세스에서의 질소의 사용은 나노급 배열 회로의 응용에서의 스위치와 메모리 소자의 집적을 가능하게 한다. 이것의 좋은 문턱 스위칭 특성에도 불구하고 AsTeGeSi 기반의 스위치는 높은 온도에서의 신뢰성 있는 저항 메모리 적용에 중요한 요소를 가진다. 이것은 보통 Te의 농도 변화에 기인한다. 그러나 chalconitride 스위치(AsTeGeSiN)은 $30{\times}30(nm^2)$ 셀에서 $1.1{\times}10^7A/cm^2$가 넘는 높은 전류 농도를 갖는 높은 온도 안정성을 보여준다. 스위치의 반복 능력은 $10^8$번을 넘어선다. 더하여 AsTeGeSiN 선택 소자를 가진 TaOx 저항성 메모리를 사용한 1 스위치-1저항으로 구성된 메모리 셀을 시연하였다.

Keywords

References

  1. Waser, R. & Aono, M. "Nanoionics-based resistive switching memories". Nature Mater. 6, 833-840 (2007). https://doi.org/10.1038/nmat2023
  2. Lee, M-J. et al. "A fast, high-endurance and scalable non-volatile memory device made from asymmetric $Ta_2O_{5-x}/TaO_{2-x}$ bilayer structures". Nature Mater. 10, 625-630 (2011). https://doi.org/10.1038/nmat3070
  3. Burr, G. W. et al. "Large-scale (512kbit) integration of multilayer-ready access-devices based on mixed-ionic-electronic-conduction (MIEC) at 100% yield". Symposium on VLSI Technology Digest of Technical Papers 2012, 41-42 (2012).
  4. Lee, W. et al. "Varistor-type bidirectional switch (JMAX>107A/$cm^2$, selectivity-104) for 3D bipolar resistive memory arrays". Symposium on VLSI Technology Digest of Technical Papers 2012, 37-38 (2012).
  5. Karpov, V. G., Kryukov, Y. A., Savransky, S. D. & Karpov, I. V. "Nucleation switching in phase change memory". Appl. Phys. Lett. 90, 123504 (2007). https://doi.org/10.1063/1.2715024
  6. Ielmini, D. & Zhang, Y. "Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices". J. Appl. Phys. 102, 054517 (2007). https://doi.org/10.1063/1.2773688
  7. Chen, G. & Chen, J. J. & Chen, W. "Raman spectra of Ge-Si-As-Se-Te-N. Phys". Chem. Glasses 38, 335-337 (1997).
  8. Chen, G. & Chen, J. "Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses". J. Am. Ceram. Soc. 82, 2934-2936 (1999).
  9. Kastner, M., Adler, D. & Fritzsche, H. "Valence-alternation model for localized gap states in lone-pair semiconductors". Phys. Rev. Lett. 37, 1504-1507 (1976). https://doi.org/10.1103/PhysRevLett.37.1504
  10. Adler, D., Henisch, H. K. & Mott, N. "The mechanism of threshold switching in amorphous alloys", Reviews Modern Physics 50, 209-220 (1978). https://doi.org/10.1103/RevModPhys.50.209