• Title/Summary/Keyword: Stabilization Loop

Search Result 145, Processing Time 0.028 seconds

Design of an Adaptive Fuzzy Controller and Its Application to Controlling Uncertain Chaotic Systems

  • Rark, Chang-woo;Lee, Chang-Hoon;Kim, Jung-Hwan;Kim, Seungho;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.95-105
    • /
    • 2001
  • In this paper, in order to control uncertain chaotic system, an adaptive fuzzy control(AFC) scheme is developed for the multi-input/multi-output plants represented by the Takagi-Sugeno(T-S) fuzzy models. The proposed AFC scheme provides robust tracking of a desired signal for the T-S fuzzy systems with uncertain parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the chaotic state tracks the state of the stable reference model(SRM) asymptotically with time for any bounded reference input signal. The suggested AFC design technique is applied for the control of an uncertain Lorenz system based on T-S fuzzy model such as stabilization, synchronization and chaotic model following control(CMFC).

  • PDF

Robust H${\infty}$Fuzzy Control of Nonlinear Systems with Time-Varying Delay via Static Output Feedback

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1486-1491
    • /
    • 2005
  • In this paper, a robust H${\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent uncertain nonlinear systems with time-varying delayed state, which is a continuous-time or discrete-time system. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H${\infty}$controllers are given in terms of linear matrix inequalities.

  • PDF

Coprime factor reduction of plant in $H{\infty}$ mixed sensitivity problem ($H{\infty}$ 혼합감도문제에서 플랜트의 소인수요소줄임)

  • 음태호;오도창;박홍배;김수중
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.20-27
    • /
    • 1996
  • In this paper, we propose a coprime factor model reduction method to get a reduced order controller in $H^{\infty}$ mixed sensitivity problem with frequency weighting functions. for this purpose, the given $H^{\infty}$ mixed sensitivity problem is transformed into robust stabilization problem with coprime factor uncertainty of given plant. This method is to define frequency weighted coprime factors of plant in CSD (chain scattering description) form and reduce the coprime factors using weighted balanced truncation. then a controller is designed to the reduced order coprime factors using J-lossless coprime factorization method. Using this approach, the robust stability condition is derived and good performance is preserved in closed loop system with the given plant and the reduced order controller. Also the order of reduced controller for guaranteeing the robust stability can be determined before designing the reduced controller. The proposed method behaves well in both stable and unstable plant.

  • PDF

Backstepping Controller Design for tracking the TORA Sysem (TORA 시스템을 추적하기 위한 백스테핑 제어기 설계)

  • Kwon, Oh-Bong;Kim, Dong-Hun;Hyun, Keun-Ho;Lee, Hyung-Chan;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.779-781
    • /
    • 1999
  • In this paper we consider the TORA system and use backstepping to design active controllers for tracking; this problem is much more challenging than stabilization. We show that the control effort of the closed-loop system can be significantly improved by exploiting the backstepping design.

  • PDF

H Sampled-Data Control of LPV Systems with Time-varying Delay (시변지연을 가지는 LPV시스템의 H 샘플데이타 제어)

  • Liu, Yajuan;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.121-127
    • /
    • 2015
  • This paper considers the problem of sampled-data control for continuous linear parameter varying (LPV) systems. It is assumed that the sampling periods are arbitrarily varying but bounded. Based on the input delay approach, the sampled-data control LPV system is transformed into a continuous time-delay LPV system. Some less conservative stabilization results represented by LMI (Linear Matrix Inequality) are obtained by using the Lyapunov-Krasovskii functional method and the reciprocally combination approach. The proposed method for the designed gain matrix should guarantee asymptotic stability and a specified level of performance on the closed-loop hybrid system. Numerical examples are presented to demonstrate the effectiveness and the improvement of the proposed method.

Stabilization of nonlinear systems using compensated fuzzy controllers (보상 퍼지 제어기를 이용한 비선형 시스템의 안정화)

  • 강성훈;박주영
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.5
    • /
    • pp.43-54
    • /
    • 1997
  • The objective of this paper is to present a controller-design method that can guarantee the global stability for nonlinear systems described by takagi-sugeno fuzzy models, and to apply the method to a typical nonlinear control problem. The presented method gives us a compensated fuzzy controller through the following major steps: First, if each local linear model of a given takagi-sugeno fuzzy system does not have the same input matrix, the method expands the system into the one with a method finds a takagi-sugeno fuzzy controller guaranteeing the global stability of the closed loop via solving relevant linear matrix inequalities. Compared to the conventional PDC (paralled distributed compensation) technique, the presented method has an advantage that trial-and-errors to check the global stability are not necessary. An illustrative simulation on the control of inverted pendulum is performed to demonstrate the applicability of the presented method, and its results show that a controller satisfying the global stability and robustness can be obtained by the method.

  • PDF

ROBUST CONTROL OF POSITIONING SYSTEMS WITH A BANG-BANG ACTUATOR (뱅-뱅 액츄에이터를 가진 위치 제어계의 강인제어)

  • 최진태;김종식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.456-460
    • /
    • 1996
  • A nonlinear control scheme for preventing limit cycle due to the nonlinearity of themulti-step bang-bang actuator in mechanical position control systems is proposed. A linearized model, SIDF, fora multi-step bang-bang actuator is introduced to compensate the nonlinearity of the multi-step bang-bang actuator. Using that model, a $H_{\infty}$robust controller for position control systms with a bang-bang actuator is proposed by loop shaping tecniques with normalized coprime factorization stabilization to address the robustness. The proposed scheme needs a smaller deadband as a result of compensating the nonlinearity of the bang-bang actuator. A single-axis servo system is served in order to verify the proposed control scheme experimentally. Experimental results show that the controller can satisfy the special intersts, silent contact switching of the actuator.r.

  • PDF

A dynamic game approach to robust stabilization of time-varying discrete linear systems via receding horizon control strategy

  • Lee, Jae-Won;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.424-427
    • /
    • 1995
  • In this paper, a control law based on the receding horizon concept which robustly stabilizes time-varying discrete linear systems, is proposed. A dynamic game problem minimizing the worst case performance, is adopted as an optimization problem which should be resolved at every current time. The objective of the proposed control law is to guarantee the closed loop stability and the infinite horizon $H^{\infty}$ norm bound. It is shown that the objective can be achieved by selecting the proper terminal weighting matrices which satisfy the inequality conditions proposed in this paper. An example is included to illustrate the results..

  • PDF

Robust Parallel Compensator Design for Static Output Feedback Stabilization of Plants with Multiple Uncertainty

  • Deng, Mingcong;Iwai, Zenta;Kajihara, Takahiro;Hasegawa, Keiji;Mizumoto, Ikuro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.1-4
    • /
    • 1999
  • This paper presents a design scheme of robust parallel compensator for plants with multiple uncertainty, which realizes strict positive realness of the closed-loop system by using static output feedback. Further, an ap-proximate relation between the static output feedback control system with the proposed compensator and the PID$.$‥D$\^$r-1 control system is shown.

  • PDF

Reduced-order Controller Design using Projective Controls (투영제어 기법을 이용한 제어기의 저차수화 설계)

  • Sang-Woo Nam
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.7
    • /
    • pp.943-951
    • /
    • 1995
  • In this paper the projective controls, previously derived to preserve the dynamic modes of a state-feedback reference system, are extended to allow the preservation of the modes of a general output-feedback reference system. In general, the extension allows projective controls to be used as a controller approximation technique, where a reduced-order controller is designed to approximate the closed-loop behavior of the higher-order reference controller. This extension is useful if the best available reference control for the system is an output-feedback control. An example shows that the increased design freedom of proposed design method allows the stabilization of a given plant using a lower-order controller than the projective controls with state-feedback reference.

  • PDF