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1. INTRODUCTION 
 

Most plants used in the real world have a strong 
nonlinearity and uncertainty. Moreover, when this system is 
controlled, time-varying delay is generally occurred and 
disturbance interrupts. Therefore to solve this problem, many 
efforts have done. 

There are many papers that propose the control 
methodology of the linear system with time-delay. But for the 
nonlinear system with time-delay, only few papers exist. This 
arises from the complexity of the nonlinear system. To 
overcome this difficulty, various schemes have been 
developed in the last two decades, among which a successful 
approach is fuzzy control. 

Cao et al. first proposed the Takagi-Sugeno (T-S) fuzzy 
model with time-delay that represents the nonlinear system 
with time-delay and analyzed the stability of that in [2]. Based 
on this, Lee et al. [3] proposed a dynamic output feedback 
robust H∞ control method for a class of uncertain fuzzy 
systems with time-varying delay. But in this method, to design 
the robust controller, bilinear matrix inequality (BMI) must be 
solved. Therefore the design of the controller is very difficult.  

Lo et al. proposed the robust static output feedback control 
method of the nonlinear system without time-delay via fuzzy 
control approach in [1]. In this method, controller can be 
easily designed by solving several linear matrix inequalities 
(LMI).  

In this paper, we extend the method that proposed in [1] to 
the nonlinear system with time-varying delay. We design the 
H∞ fuzzy controller that robustly control the nonlinear 
system with time-varying delay subject to external 
disturbances. To this end, we first represent the nonlinear 
system with time-delay to fuzzy model with time-delay as did 
in [2]. Then parallel distributed compensation technique is 
applied for the design of the static output feedback fuzzy 
controller. After selecting one Lyapunov function, we derive 
the sufficient condition for stability of the fuzzy system. But 
this condition is composed of BMIs. Therefore we convert it 
LMI by using similarity transform and congruence transform 
technique. From this, the H∞ fuzzy controller can be easily 
designed by many current convex optimization algorithm 
tools. 

The remainder of the paper is organized as follows: 
following the introduction, problem formulation is done in 
Section 2. In Section 3, the sufficient condition for making the 
continuous-time T-S fuzzy model with time-varying delay 
asymptotically stable is derived. In Section 4, the same 

procedure is done for discrete-time T-S fuzzy system with 
time-varying delay. Finally, some conclusions are drawn in 
Section 5. 

 
2. PROBLEM FORMULATION 

 
The T-S fuzzy model is generally known as the universal 

approximator of nonlinear systems. We consider nonlinear 
systems represented by the following T-S fuzzy model with 
time-delay. 
 
Plant Rule i: 

1 1

1 2 2

IF ( ) is  and  and ( ) is 
THEN ( ) ( ( )) ( ) ( ( )) ( ( ))
                     ( ( )) ( ) ( ( )) ( )
             z( ) ( ( )) ( ) ( ( )) ( ( ))

     

i n in

i di d

i i

i di d

t M t M
x t A A t x t A A t x t d t

B t t B B t u t
t C C t x t C C t x t d t

θ θ
σ

ω1

= + ∆ + + ∆ −
+ + ∆Β + + ∆
= + ∆ + + ∆ −

1 2 2                ( ( )) ( ) ( ( )) ( )
              ( ) ( ),                                   1, ,
              ( ) 0,                                          0.

i iD D t t D D t u t
y t Ex t i r
x t t

ω1+ + ∆ + + ∆
= =
= ≤  

Where ijM  is the fuzzy set, ( ) nx t ∈ℜ  is the state vector, 

( ) qtω ∈ℜ  is unknown but the energy-bounded disturbance 

input, ( ) qu t ∈ℜ  is the controlled input, ( ) sz t ∈ℜ  is the 

controlled output, ( )1 2 1 2, , , , , , ,i di i i i di i iA A B B C C D D  are some 

constant matrices of compatible dimensions, r  is the 
number of IF-THEN rules, and 
( ) ( ) ( ) ( )1 2 pt t t tθ θ θ θ =    are the premise variables. 

It is assumed that the premise variables do not depend on the 
input variables ( )u t  explicitly. The time-varying delay, 

( )d t  is assumed that  

0 ( ) ,     ( )d t d t β≤ ≤ ∞ ≤ <1.  
The time-varying matrices,  
( )1 2 1 2), ( ), ( ), ( ), ), ( ), ( ), ( )d dt A t B t B t C t C t D t D t∆Α( ∆ ∆ ∆ ∆ ( ∆ ∆ ∆ , is 

defined as follows: 
( ) ( )

( )
1 2 1 2 3 4

1 2 1 2 3 4

) ( ) ( ) ( )
,

) ( ) ( ) ( ) ( )
d

d z z z z z z

t A t B t B t M t N N N N
C t C t D t D t M t N N N N

∆Α( ∆ ∆ ∆  ∆  
=   ∆ ( ∆ ∆ ∆ ∆   

where ( )1 2 3 4 1 2 3 4, , , , , , , , ,z z z z zM M N N N N N N N N  is known 

real constant matrices, and ( ), z∆ ∆  are unknown matrix 

functions with Lebesgue-measurable elements and satisfies 
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(3)

(4)

(5)

(6)

(7)

(8)

(9)

( ) ( ) ( ) ( )' ',   ,z zt t I t t I∆ ∆ ≤ ∆ ∆ ≤  in which I  is the 

identity matrix of appropriate dimension. 
 
Remark 1: The uncertain fuzzy system (1) encompasses 

the nonlinear system, which it represents. 
 

The defuzzified output of (1) is represented as follows: 

1

1 2 2

1

1 2 2

( ) ( ( ))[( ( )) ( ) ( ( )) ( ( ))

         ( ( )) ( ) ( ( )) ( )]

   ( ) ( ( ))[( ( )) ( ) ( ( )) ( ( ))

         ( ( )) ( ) ( ( )) (

r

i i di d
i

i i
r

i i di d
i

i i

x t t A A t x t A A t x t d t

B t t B B t u t

z t t C C t x t C C t x t d t

D D t t D D t u t

σ µ θ

ω

µ θ

ω

=

1

=

1

= + ∆ + + ∆ −

+ + ∆Β + + ∆

= + ∆ + + ∆ −

+ + ∆ + + ∆

∑

∑
)]

   ( ) ( ).y t Ex t=  
where   

1

1

( ( ))( ( )) ,   ( ( )) ( ( )).
( ( ))

n
i

i i ikr
k

i
i

z tz t z t M z t
z t

ωµ ω
ω =

=

= =∏
∑

 

 
The controller is a static output feedback fuzzy controller 

of the following defuzzifed form: 

1

( ) ( ( )) ( ),
r

i i
i

u t x t K y tµ
=

=∑  

where 
iK  are constant control gains to be determined. For 

simplicity, we represent ( )( )i tµ θ  as iµ  and abbreviate the 

time index, t , in time-varying matrices. 
 
Substituting Eq. (4) into Eq. (3), the closed-loop system is 

obtained as follows: 

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )

2 4

2 1 3

2 4

2 1 3

( ) ( )

          + ( )

   ( ) ( )

          + ( )

   .

d

z z z z

d z z z z z z

x t A B K E M N N K E x t

A M N x t d t B M N t

z t C D K E M N N K E x t

C M N x t d t D M N t

y t Ex t

µ µ µ µ

µ µ

µ µ µ µ

µ µ

σ

ω

ω

1

1

 = + + ∆ + 

+ ∆ − + + ∆

 = + + ∆ + 

+ ∆ − + + ∆

=  
where 

{ }1 2 1 2
1

,   , , , , , , , .
r

i i i i di i i i di i i
i

Y Y Y A A B B C C D Dµ µ
=

= ∈∑  

 
The performance considered here is an H∞ criterion such 

that the following is satisfied: 
 
In the continuous-time case 

( ) ( ) ( ) ( )' '

0 0
.z z d dτ τ τ γ ω τ ω τ τ

∞ ∞2<∫ ∫  

 
In the discrete-time case 

( ) ( ) ( ) ( )' '

0 0

.z z
τ τ

τ τ γ ω τ ω τ
∞ ∞

2

= =

<∑ ∑  

 
Definition 1: H∞ fuzzy controller 
1) The controller makes the system (1), (3) robustly stable 

in the presence of ( ).tω  

2) Given γ , the closed-loop system (5) must satisfy the 
criterion (6) in continuous-time case or (7) in discrete-time 
case, in which the initial condition is zero. 

 
3. CONTINUOUS-TIME SYSTEMS 

 
In this section, a continuous-time static output feedback 

fuzzy controller satisfying Definition 1 will be addressed. It 
should be noted that the result presented in Theorem 1, arising 
from static output feedback stabilization problems, is only 
existential and can not be solved by present convex algorithm. 
Therefore further work is required for easy application. 

Theorem 1 Given a constant 0γ > , the system (1) is robustly 
stabilizable by the controller (4) if there exists the positive 
symmetric matrices P , S  and control gains, jK  satisfied 

the following matrix inequalities. In other words, (4) is the 
H∞ fuzzy controller. 

 

( )
0,                                           1, ,

1 1 0,      1
1 2

ii

ii ij ji

M i r

M M M i j r
r

< =



+ + < ≤ ≠ ≤ −

 

 
where the second equation at the bottom of the next page 
holds, and  

' ' ' '
2 2

1 ,
1ij j j i i i jA P E K B P PA PB K E S

β
Φ = + + + +

−

2 ,ij i i jC D K EΓ = +  
1 4 ,j jN N K EΨ = +  

1 4 .zj z z jN N K EΨ = +  

 
Proof: 
Consider the following Lyapunov function: 

( )( ) ( ) ( )
( )

' '1( )
1

t

t d t
V x t x t Px x Sx dτ τ τ

β −
= +

− ∫  

where P and S is positive symmetric matrices, and β  is 
the constant defined by (2). Clearly, ( )( )V x t  is positive 

definite and radially unbounded. The time derivative of 
( )( )V x t  is  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

' ' '

'

1
1

1
   .

1

V x t Px t x t Px t x t Sx t

d t
x t d t Sx t d t

β

β

= + +
−

−
− − −

−

 

Then, we show (8) is the sufficient condition to satisfy the 
following inequality: 
( ) ( ) ( ) ( ) ( )' ' 0V t z t z t t tγ ω ω2+ − <  

From (5), we have 
( ) ( ) ( ) ( ) ( )

( )
( )( )

( )

( )

' '

' ' ' ''
2

'

' 2
1

'' ' ' ' ' '
2 1 4

' ' ' '
2

' ' ' '
1 3

1

1* * *
1

*
0

*

0
0

d

z z z z

d z z z

z z z

V t z t z t t t

A P E K B P Sx t

x t d t A P S
B P Iw t

C E K D N N K E M

C N M
D N M

PM
N N

µ µ µ

µ

µ

µ µ µ µ

µ

µ

γ ω ω

β

γ

2+ − ≤

  + + +    −   
− −   

    −      
 + + + ∆
 
 + + ∆
 + ∆  

 
 + ∆ + 
  

( )
( )( )

( )
4 2 3 *

x t

K E N N x t d t

w t
µ

 
   + −   
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After applying a matrix fact 
' ' ' ' 1 'M N N M MM N Nε ε −∆ + ∆ ≤ +  

on the third and the fourth terms within ( ), a direct Schur 
complement to the resulting upper bound < 0 yields 
 

' ' ' '
2

'

'
1

2 1
'

1

1 4 2 3

1* * * * * *
1

* * * *
0 * * *

* *
0 0 0 *

0 0

d

d

A P E K B P S

A P S
B P I

C D K E C D I
M P I

N N K E N N I

µ µ µ

µ

µ

µ µ µ µ µ

µ

β

γ

ε ε
ε

2

1

1

 + + + −
 

− 
 − 

+ − 
 − 
 + − 

[ ]

1 4

2

0
0
0

0 0 0 0 0 *

0
0

0
0
0

0 0 0 0 0 *
0

0

z z z
z

z z

z

N N K E
M

N

M
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 + ∆ + +   
 
 
 
 
 
 
 
 

+ ∆ + 
 
 
 
 

 

[ ]3

0
0
0

0 0 0 0 0 * 0
0
0

z z

z

N

M

 
 
 
 

+ ∆ + < 
 
 
 
 

 

 
The matrix fact and a second Schur complement again, the 

inequality is converted to (10) 
where 

' ' ' '
2 2

1 ,
1

A P E K B P PA PB K E Sµ µ µ µ µ µ µ β
Φ = + + + +

−

2 ,C D K Eµ µ µ µΓ = +  1 4 ,N N K Eµ µΨ = +  

1 4 .z z zN N K Eµ µΨ = +  

 
Inequality (10) can be expressed as follows: 

1 1

0
r r

i j ij
i j

Mµ µ
= =

<∑∑  

Based on parameterized linear matrix inequality (PLMI) 
technique [5], (10) is converted to less conservative and 
computationally efficient condition (8).  
In the zero initial condition, integrating (9) from 0t =  to 
∞  yields  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

' '

0
'   0 0 0 0.

J z z d

V V x Px

τ τ γ ω τ ω τ τ
∞ 2
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∫  
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0 0 0 0 0 0 0 0 * *

0 0 0 0 0 0 0 0 0
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i
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j
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z
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ε
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ε
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* * * * * * * * * * *
* * * * * * * * * *
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0 0 0 0 0 0 0 0 0 *
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ε
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ε
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−
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(11)

(12)

(13)

(14)

Therefore, jK  satisfying (8) satisfies the Definition 1. 

Q.E.D. 
 

The inequality (8) is BMIs which is not solvable by the 
convex programming technique. Therefore further 
manipulations are required. Here we use the method that 
proposed in [1]. First we define new state variables  

.x Tx=  
Then (5) is converted followings: 

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

2 4

2 1 3

2 4

2 1 3

( ) ( )

          + ( )

   ( ) ( )

          + ( ) .

d

z z z z

d z z z z z z

x t A B K E M N N K E x t

A M N x t d t B M N t

z t C D K E M N N K E x t

C M N x t d t D M N t

µ µ µ µ

µ µ

µ µ µ µ

µ µ

σ

ω

ω

1

1

 = + + ∆ + 

+ ∆ − + + ∆

 = + + ∆ + 

+ ∆ − + + ∆

 

where  
1 1 1

2 2

1
1 1

1
1 1 2 2 1 1 2 2

,  ,  ,

,  ,  ,  ,  

,  ,  ,  ,  ,

d d

d d

z z z z

A T A T B T B A T A T

B T B C C T C C T E ET

M T M N N T N N T N N T N N T

µ µ µ µ µ µ

µ µ µ µ µ µ

− − −

−

−

= = =

= = = =

= = = = =

 

 
Let 1.Q P−=  

1

2

0
0
p p

n n

Q
Q

Q
×

×

 
=  
 

 

The transformation matrix, ,T  is selected in order to satisfy 
the following condition: 

0 .pE ET I = =    

That is 

( ) ( )1' ' 'ortc .
n p

T E EE E
−

−

 =   
 

where ( )'ortc E  denotes orthogonal complement of '.E  

Applying Theorem 1 to (11), the sufficient condition to 
stabilize (11) is the following: 

( )
0,                                           1, ,

1 1 0,      1
1 2

ii

ii ij ji

M i r

M M M i j r
r

 < =



+ + < ≤ ≠ ≤ −

 

Where the equation at the bottom of the page holds, and 
' ' ' '

2 2
1 ,

1ij j j i i i jA P E K B P PA PB K E S
β

Φ = + + + +
−

2 ,ij i i jC D K EΓ = +  
1 4 ,j jN N K EΨ = +  

1 4 .zj z z jN N K EΨ = +  

 
Let  

[ ].diag Q Q I I I I I I I I I IΘ =  

Pre- and post-multiplying (12) by Θ , the inequality 
expounded is displayed as 

( )
0,                                           1, ,

1 1 0,      1
1 2

ii

ii ij ji

M i r

M M M i j r
r

< =



+ + < ≤ ≠ ≤ −

 

where the first equation at the bottom of the next page holds, 
and 

'
' '

2 2
10 ,

10
j

ij j i i i j
F

QA B AQ PB F X
β

 
 Φ = + + + +    − 

2 0 ,ij i i jC Q D F Γ = +    
1 4 0 ,j jN Q N F Ψ = +    

1 4 0 ,zj z z jN Q N F Ψ = +    0,X QSQ= >  1.j jF K Q=  

 
Remark 2: The matrices, X and Q , are independent. 
 
Remark 3: By defining the new variable, 

1,j jF K Q=  the 

inequality (13) is linear matrix inequality that has following 7 
variables: ( )1 2 3 4, , , , , , .jQ X F ε ε ε ε  

 
4. DISCRETE-TIME SYSTEMS 

 
As we did for the continuous-time case, the same 

procedure is applicable to the discrete-time systems. The result 
is stated below. 

Theorem 2 Given a constant 0γ > , the system (1) is 
robustly stabilizable by the controller (4) if there exists the 
positive symmetric matrices P , S  and control gains, jK  

satisfied the following matrix inequalities. In other words, (4) 
is the H∞ fuzzy controller. 

( )
0,                                           1, ,

1 1 0,      1
1 2

ii

ii ij ji

M i r

M M M i j r
r

< =



+ + < ≤ ≠ ≤ −

 

where the second equation at the bottom of the next page 
holds 

2 ,ij i i jA B K EΓ = +  1 4 ,j jN N K EΩ = +  
2 ,ij i i jC D K EΨ = +  

'

'
1

1
'

1

2 3
'

2 2

2
'

3 3

2 3

* * * * * * * * * * *
* * * * * * * * * *

0 * * * * * * * * *
* * * * * * * *

0 0 0 * * * * * * *
0 0 * * * * * *

0 0 0 0 0 * * * * *
0 0 0 0 0 0 * * * *

0 0 0 0 0 0 0 * * *
0 0 0 0 0 0 0 0 * *

0 0 0 0 0 0

ij

d i

i

ij d i i

j
ij

z

zj

z

z

A P S
B P I

C D I
M P I

N N I
M

M I
I

M I
N I

γ

ε ε
ε

ε ε
ε

ε ε
ε

ε

2

1

1

Φ
−

−
Γ −

−
Ψ −

=
−

Ψ −
−

−
'

4 4

3 4

0 0 0 *
0 0 0 0 0 0 0 0 0 0

z

z

M I
N I

ε
ε

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − 
 − 
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(15)

(16)

1 4 .j z z jN N K EΛ = +  

 
Proof: 
Considet the following Lyapunov function: 

( )( ) ( ) ( ) ( ) ( )
( )

1

.
k

T T

k d k

V x k x k Px k x Sx
σ

σ σ
−

= −

= + ∑  

The procedure of the proof is almost identical to that of the 
continuous-time case. 

Q.E.D. 
 

Let x Tx= . Then (5) is converted (11). Applying 
Theorem 2 to (11), the sufficient condition to stabilize (11) is 
the following: 

( )
0,                                           1, ,

1 1 0,      1
1 2

ii

ii ij ji

M i r

M M M i j r
r

 < =



+ + < ≤ ≠ ≤ −

 

where the first equation at the bottom of the next page holds, 
and 

2ij i i jA B K EΓ = + , 1 4j jN N K EΩ = +  , 
2ij i i jC D K EΨ = +  

1 4j z z jN N K EΛ = + .  

 
Let 1Q P−=  and 

[ ].diag Q Q I I I I I I I I I IΘ =  

Pre- and post-multiplying (15) by Θ , the inequality 
expounded is displayed as 

( )
0,                                           1, ,

1 1 0,      1
1 2

ii

ii ij ji

M i r

M M M i j r
r

< =



+ + < ≤ ≠ ≤ −

 

where the second equation at the bottom of the next page 
holds, and 
 

2 0 ,ij i i jAQ B F Γ = +   1 4 0 ,j jN Q N F Ω = +    

2 0 ,ij i i jC Q D F Ψ = +    
1 4 0 ,j z z jN Q N F Λ = +    

0,X QSQ= >  1.j jF K Q=  

 
5. CONCLUSION 

 
In this paper, the fuzz control approach is proposed to 

robustly control the nonlinear system with time-varying delay. 
Using Lyapunov theory, the sufficient condition is derived. 
Through the manipulation, bilinear matrix inequality is 
converted to linear matrix inequality. Therefore, we can easily 
design the controller via current convex algorithm. 
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0 * * * * * * * * *
* * * * * * * *

0 0 0 * * * * * * *
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di
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zj

z

z

z

QA X
B I

C Q D I
M I

N Q N I
M

M I
I

M I
N Q I

M

γ

ε ε
ε
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