• Title/Summary/Keyword: Sn-3.0Ag-0.5Cu (SAC305)

Search Result 26, Processing Time 0.019 seconds

Effects of Ni-P Bath on the Brittle Fracture of Sn-Ag-Cu Solder/ENEPIG Solder Joint (ENEPIG/Sn-Ag-Cu 솔더 접합부의 취성 파괴에 미치는 무전해 니켈 도금액의 영향)

  • Kim, Kyoung-Ho;Seo, Wonil;Kwon, Sang-Hyun;Kim, Jun-Ki;Yoon, Jeong-Won;Yoo, Sehoon
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • The effect of metal turnover (MTO) of electroless Ni plating bath on the brittle fracture behavior of electroless nickel electroless palladium immersion gold (ENEPIG)/Sn-3.0wt%Ag-0.5wt%Cu(SAC305) solder joint was evaluated in this study. The MTOs of the electroless Ni for the ENEPIG surface finish were 0 and 3. As the MTO increased, the interfacial IMC thickness increased. The brittle fracture behavior of the ENEPIG/SAC305 solder joint was evaluated with high speed shear (HSS) test. The HSS strength decreased with increasing the MTO of the electroless Ni bath. The brittle fracture increased with increasing the shear speed of the HSS test. The percentage of the brittle fracture for the 3 MTO sample was much higher than that for the 0 MTO sample.

Fine-Pitch Solder on Pad Process for Microbump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1152-1155
    • /
    • 2013
  • A cost-effective and simple solder on pad (SoP) process is proposed for a fine-pitch microbump interconnection. A novel solder bump maker (SBM) material is applied to form a 60-${\mu}m$ pitch SoP. SBM, which is composed of ternary Sn3.0Ag0.5Cu (SAC305) solder powder and a polymer resin, is a paste material used to perform a fine-pitch SoP through a screen printing method. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder, the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. Test vehicles with a daisy chain pattern are fabricated to develop the fine-pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si chip has 6,724 bumps with a 45-${\mu}m$ diameter and 60-${\mu}m$ pitch. The chip is flip chip bonded with a Si substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of the underfill. The optimized bonding process is validated through an electrical characterization of the daisy chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and microbump interconnection using a screen printing process.

Effect of PCB Surface Finishs on Intermetallic Compound Growth Kinetics of Sn-3.0Ag-0.5Cu Solder Bump (Sn-3.0Ag-0.5Cu 솔더범프의 금속간화합물 성장거동에 미치는 PCB 표면처리의 영향)

  • Jeong, Myeong-Hyeok;Kim, Jae-Myeong;Yoo, Se-Hoon;Lee, Chang-Woo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.81-88
    • /
    • 2010
  • Thermal annealing and electromigration test were performed at $150^{\circ}C$ and $4{\times}10^3\;A/cm^2$ conditions in order to investigate the effect of PCB surface finishs on the growth kinetics of intermetallic compound (IMC) in Sn-3.0Ag-0.5Cu solder bump. The surface finishes of the electrodes of printed circuit board (PCB) were organic solderability preservation (OSP), immersion Sn, and electroless Ni/immersion gold (ENIG). During thermal annealing, the OSP and immersion Sn show similar IMC growth velocity, while ENIG surface finish had much slower IMC growth velocity. Applying electric current accelerated IMC growth velocity and showed polarity effect due to directional electron flow.

Solderability of thin ENEPIG plating Layer for Fine Pitch Package application (미세피치 패키지 적용을 위한 thin ENEPIG 도금층의 솔더링 특성)

  • Back, Jong-Hoon;Lee, Byung-Suk;Yoo, Sehoon;Han, Deok-Gon;Jung, Seung-Boo;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • In this paper, we evaluated the solderability of thin electroless nickel-electroless palladium-immersion gold (ENEPIG) plating layer for fine-pitch package applications. Firstly, the wetting behavior, interfacial reactions, and mechanical reliability of a Sn-3.0Ag-0.5Cu (SAC305) solder alloy on a thin ENEPIG coated substrate were evaluated. In the wetting test, maximum wetting force increased with increasing immersion time, and the wetting force remained a constant value after 5 s immersion time. In the initial soldering reaction, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) and P-rich Ni layer formed at the SAC305/ENEPIG interface. After a prolonged reaction, the P-rich Ni layer was destroyed, and $(Cu,Ni)_3Sn$ IMC formed underneath the destroyed P-rich Ni layer. In the high-speed shear test, the percentage of brittle fracture increased with increasing shear speed.

The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package

  • Kim, Hyun-Ho;Kim, Do-Hyung;Kim, Jong-Bin;Kim, Hee-Jin;Ahn, Jae-Ung;Kang, In-Soo;Lee, Jun-Kyu;Ahn, Hyo-Sok;Kim, Sung-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we investigated the effects of UBM(Under Bump Metallization) and solder composition on the drop impact reliability of wafer level packaging. Fan-in type WLP chips were prepared with different solder ball composition (Sn3.0Ag0.5Cu, and Sn1.0Ag0.5Cu) and UBM (Cu 10 ${\mu}m$, Cu 5 ${\mu}m$\Ni 3 ${\mu}m$). Drop test was performed up to 200 cycles with 1500G acceleration according to JESD22-B111. Cu\Ni UBM showed better drop performance than Cu UBM, which could be attributed to suppression of IMC formation by Ni diffusion barrier. SAC105 was slightly better than SAC305 in terms of MTTF. Drop failure occurred at board side for Cu UBM and chip side for Cu\Ni UBM, independent of solder composition. Corner and center chip position on the board were found to have the shortest drop lifetime due to stress waves generated from impact.

Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

  • Eom, Yong-Sung;Jang, Keon-Soo;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.820-828
    • /
    • 2019
  • A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 ℃, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

Effect of Shearing Speed and UBMs on High Speed Shear Properties of Sn3.0Ag0.5Cu Solder Ball (Sn3.0Ag0.5Cu 솔더 볼의 고속 전단특성에 미치는전단속도 및 UBM층의 영향)

  • Jung, Do-Hyun;Lee, Wang-Gu;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.635-641
    • /
    • 2011
  • The effect of high shear speed on shear force, shear energy and fracture surface was investigated for the solder joint of a $Sn-_{3.0}Ag-_{0.5}Cu$ ball. For both ENIG and OSP pads, the shear force increased with an increase in shearing speed to 0.3 m/s. However, for an ENEPIG pad, the shear force increased with an increase in shear speed to 0.6 m/s and kept almost constant afterward. The shear energy decreased with an increase in shearing speed for ENIG and OSP pads. For the ENEPIG pad, however, the shear energy almost remained constant in a shearing speed range 0.3-3.0 m/s. The fracture mode analysis revealed that the amount of brittle fracture for the ENIG and the OSP pads increased with shearing speed, and a complete brittle fracture appeared at 1.0 m/s for ENIG and 2.0 m/s for OSP. However, the ENEPIG pad showed only a ductile fracture until 0.25 m/s, and a full brittle fracture didn't occur up to 3.0 m/s. The fracture mode matched well with the shear energy. The results from the high speed shear test of SAC305 were similar to those of SAC105.

Electromigration and Thermomigration in Flip-Chip Joints in a High Wiring Density Semiconductor Package

  • Yamanaka, Kimihiro
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • Keys to high wiring density semiconductor packages include flip-chip bonding and build-up substrate technologies. The current issues are the establishment of a fine pitch flip-chip bonding technology and a low coefficient of thermal expansion (CTE) substrate technology. In particular, electromigration and thermomigration in fine pitch flipchip joints have been recognized as a major reliability issue. In this paper, electromigration and thermomigration in Cu/Sn-3Ag-0.5Cu (SAC305)/Cu flip-chip joints and electromigration in Cu/In/Cu flip chip joints are investigated. In the electromigration test, a large electromigration void nucleation at the cathode, large growth of intermetallic compounds (IMCs) at the anode, a unique solder bump deformation towards the cathode, and the significantly prolonged electromigration lifetime with the underfill were observed in both types of joints. In addition, the effects of crystallographic orientation of Sn on electromigration were observed in the Cu/SAC305/Cu joints. In the thermomigration test, Cu dissolution was accelerated on the hot side, and formation of IMCs was enhanced on the cold side at a thermal gradient of about $60^{\circ}C$/cm, which was lower than previously reported. The rate of Cu atom migration was found comparable to that of electromigration under current conditions.

Novel Bumping Material for Solder-on-Pad Technology

  • Choi, Kwang-Seong;Chu, Sun-Woo;Lee, Jong-Jin;Sung, Ki-Jun;Bae, Hyun-Cheol;Lim, Byeong-Ok;Moon, Jong-Tae;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.637-640
    • /
    • 2011
  • A novel bumping material, which is composed of a resin and Sn3Ag0.5Cu (SAC305) solder power, has been developed for the maskless solder-on-pad technology of the fine-pitch flip-chip bonding. The functions of the resin are carrying solder powder and deoxidizing the oxide layer on the solder power for the bumping on the pad on the substrate. At the same time, it was designed to have minimal chemical reactions within the resin so that the cleaning process after the bumping on the pad can be achieved. With this material, the solder bump array was successfully formed with pitch of 150 ${\mu}m$ in one direction.

Sn-Ag-Cu Solder Joint Properties on Plasma Coated Organic Surface Finishes and OSP (플라즈마 유기막과 OSP PCB 표면처리의 Sn-Ag-Cu 솔더 접합 특성 비교)

  • Lee, Tae-Young;Kim, Kyoung-Ho;Bang, Jung-Hwan;Park, Nam-Sun;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.25-29
    • /
    • 2014
  • Plasma organic thin film for PCB surface finish is a potential replacement of the conventional PCB finishes because of environment-friendly process, high corrosion-resistance and long shelf life over 1 year. In this study, solder joint properties of the plasma organic surface finish were estimated and compared with OSP surface finish. The plasma surface finish was deposited by chemical vapor deposition from fluorine-based precursors. The thickness of the plasma organic coating was 20 nm. Sn-3.0Ag-0.5Cu (SAC305) solder was used as solder joint materials. From a salt spray test, the plasma organic coating had higher corrosion resistance than the OSP surface finish. The spreadability of SAC305 on plasma organic coating was higher than that on OSP surface finish. SEM and TEM micrographs showed that the interfacial microstructure of the plasma surface finish sample were similar to that of the OSP sample. Solder joint strength of the plasma finish sample was also similar to that of the OSP finished sample.