• Title/Summary/Keyword: Singular value decomposition (SVD)

Search Result 220, Processing Time 0.031 seconds

Application to the design of reduced-order robust MPC and MIMO identification

  • Lee, Kwang-Soon;Kim, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.313-316
    • /
    • 1997
  • Two different issues, design of reduced-order robust model predictive control and input signal design for identification of a MIMO system, are addressed and design techniques based on singular value decomposition(SVD) of the pulse response circulant matrix(PRCM) are proposed. For this, we investigate the properties of the PRCM, which is a periodic approximation of a linear discrete-time system, and show its SVD represents the directional as well as the frequency decomposition of the system. Usefulness of the PRCM and effectiveness of the proposed design techniques are demonstrated through numerical examples.

  • PDF

Sensor Fault Detection of Small Turboshaft Engine for Helicopter

  • Seong, Sang-Man;Rhee, Ihn-Seok;Ryu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.97-104
    • /
    • 2008
  • Most of engine control systems for helicopter turboshaft engines are equipped with dual sensors. For the system with dual redundancy, analytic methods are used to detect faults based on the system dynamical model. Helicopter engine dynamics are affected by aerodynamic torque induced from the dynamics of the main rotor. In this paper an engine model including the rotor dynamics is constructed for the T700-GE-700 turboshaft engine powering UH-60 helicopter. The singular value decomposition(SVD) method is applied to the developed model in order to detect sensor faults. The SVD method which do not need an additional computation to generate residual uses the characteristics that the system outputs in direction of the left singular vector if an input is applied in direction of the right singular vector. Simulations show that the SVD method works well in detecting and isolating the sensor faults.

  • PDF

A Hybrid Coordinate Partitioning Method in Mechanical Systems Containing Singular Configurations

  • Yoo, Wan-Suk;Lee, Soon-Young;Kim, Oe-Jo
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.3
    • /
    • pp.174-180
    • /
    • 2002
  • In multibody dynamics, DAE(Differential Algebraic Equations) that combine differential equations of motion and kinematic constraint equations should be solved. To solve these equations, either coordinate partitioning method or constraint stabilization method is commonly used. The most typical coordinate partitioning methods are LU decomposition, QR decomposition, and SVD(singular value decomposition). The objective of this research is to suggest a hybrid coordinate partitioning method in the dynamic analysis of multibody systems containing singular configurations. Two coordinate partitioning methods, i.e. LU decomposition and QR decomposition for constrained multibody systems, are combined for a new hybrid coordinate partitioning method. The proposed hybrid method reduces the simulation time while keeping accuracy of the solution.

MANCOVA Biplot

  • Choi Yong-Seok;Hyun Gee Hong;Jung Su Mi
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.705-712
    • /
    • 2005
  • Biplot is a graphical display of the rows and columns of an n${\times}$p data matrix. In particular, Gabriel (1995) suggested the MANOVA biplot using singular value decomposition (SVD) with the averages of response variables according to treatment groups. But his biplot may cause wrong results by disregarding them when there exist covariate effects. In this paper, we will provide the MANCOA biplot based on the SVD with the parameter estimates for MANCOVA model when there exist covariate effects.

다변량 공분산분석 행렬도

  • Jeong, Su-Mi;Choe, Yong-Seok;Hyeon, Gi-Hong
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.285-290
    • /
    • 2005
  • Biplot is a graphical display of the rows and columns an $n{\time}p$ data matrix. In particular, Gabriel(1981) suggested The MANOVA BIPLOT using singular value decomposition (SVD) with the averages of response variables according to treatment groups. But his biplot may cause wrong results by disregarding them when there exists covariate effects. In this paper, we will provide the MANCOVA BIPLOT based on the SVD with the parameter estimates for MANCOVA model when there exist covariate effects.

  • PDF

Comparison of Thresholding Techniques for SVD Coefficients in CT Perfusion Image Analysis (CT 관류 영상 해석에서의 SVD 계수 임계화 기법의 성능 비교)

  • Kim, Nak Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.276-286
    • /
    • 2013
  • SVD-based deconvolution algorithm has been known as the most effective technique for CT perfusion image analysis. In this algorithm, in order to reduce noise effects, SVD coefficients smaller than a certain threshold are removed. As the truncation threshold, either a fixed value or a variable threshold yielding a predetermined OI (oscillation index) is frequently employed. Each of these two thresholding methods has an advantage to the other either in accuracy or efficiency. In this paper, we propose a Monte Carlo simulation method to evaluate the accuracy of the two methods. An extension of the proposed method is presented as well to measure the effects of image smoothing on the accuracy of the thresholding methods. In this paper, after the simulation method is described, experimental results are presented using both simulated data and real CT images.

KOREAN TOPIC MODELING USING MATRIX DECOMPOSITION

  • June-Ho Lee;Hyun-Min Kim
    • East Asian mathematical journal
    • /
    • v.40 no.3
    • /
    • pp.307-318
    • /
    • 2024
  • This paper explores the application of matrix factorization, specifically CUR decomposition, in the clustering of Korean language documents by topic. It addresses the unique challenges of Natural Language Processing (NLP) in dealing with the Korean language's distinctive features, such as agglutinative words and morphological ambiguity. The study compares the effectiveness of Latent Semantic Analysis (LSA) using CUR decomposition with the classical Singular Value Decomposition (SVD) method in the context of Korean text. Experiments are conducted using Korean Wikipedia documents and newspaper data, providing insight into the accuracy and efficiency of these techniques. The findings demonstrate the potential of CUR decomposition to improve the accuracy of document clustering in Korean, offering a valuable approach to text mining and information retrieval in agglutinative languages.

Recommender Systems using SVD with Social Network Information (사회연결망정보를 고려하는 SVD 기반 추천시스템)

  • Kim, Min-Gun;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.1-18
    • /
    • 2016
  • Collaborative Filtering (CF) predicts the focal user's preference for particular item based on user's preference rating data and recommends items for the similar users by using them. It is a popular technique for the personalization in e-commerce to reduce information overload. However, it has some limitations including sparsity and scalability problems. In this paper, we use a method to integrate social network information into collaborative filtering in order to mitigate the sparsity and scalability problems which are major limitations of typical collaborative filtering and reflect the user's qualitative and emotional information in recommendation process. In this paper, we use a novel recommendation algorithm which is integrated with collaborative filtering by using Social SVD++ algorithm which considers social network information in SVD++, an extension algorithm that can reflect implicit information in singular value decomposition (SVD). In particular, this study will evaluate the performance of the model by reflecting the real-world user's social network information in the recommendation process.

Digital Image Watermarking Scheme in the Singular Vector Domain (특이 벡터 영역에서 디지털 영상 워터마킹 방법)

  • Lee, Juck Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.122-128
    • /
    • 2015
  • As multimedia information is spread over cyber networks, problems such as protection of legal rights and original proof of an information owner raise recently. Various image transformations of DCT, DFT and DWT have been used to embed a watermark as a token of ownership. Recently, SVD being used in the field of numerical analysis is additionally applied to the watermarking methods. A watermarking method is proposed in this paper using Gabor cosine and sine transform as well as SVD for embedding and extraction of watermarks for digital images. After delivering attacks such as noise addition, space transformation, filtering and compression on watermarked images, watermark extraction algorithm is performed using the proposed GCST-SVD method. Normalized correlation values are calculated to measure the similarity between embedded watermark and extracted one as the index of watermark performance. Also visual inspection for the extracted watermark images has been done. Watermark images are inserted into the lowest vertical ac frequency band. From the experimental results, the proposed watermarking method using the singular vectors of SVD shows large correlation values of 0.9 or more and visual features of an embedded watermark for various attacks.

A Study on the Condition Monitoring for GIS Using SVD in an Attractor of Chaos Theory

  • J.S. Kang;Kim, C.H.;R.K. Aggarwal
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.1
    • /
    • pp.33-41
    • /
    • 2004
  • Knowledge of partial discharge (PD) is important to accurately diagnose and predict the condition of insulation. The PD phenomenon is highly complex and seems to be random in its occurrence. This paper indicates the possible use of chaos theory for the recognition and distinction concerning PD signals. Chaos refers to a state where the predictive abilities of a systems future are lost and the system is rendered aperiodic. The analysis of PD using deterministic chaos comprises of the study of the basic system dynamics of the PD phenomenon. This involves the construction of the PD attractor in state space. The simulation results show that the variance of an orthogonal axis in an attractor of chaos theory increases according to the magnitude and the number of PDs. However, it is difficult to clearly identify the characteristics of the PDs. Thus, we calculated the magnitude on an orthogonal axis in an attractor using singular value decomposition (SVD) and principal component analysis (PCA) to extract the numerical characteristics. In this paper, we proposed the condition monitoring method for gas insulated switchgear (GIS) using SVD for efficient calculation of the variance. Thousands of simulations have proven the accuracy and effectiveness of the proposed algorithm.