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Abstract

  Most of engine control systems for helicopter 
turboshaft engines are equipped with dual sensors.  
For the system with dual redundancy, analytic 
methods are used to detect faults based on the 
system dynamical model.  Helicopter engine 
dynamics are affected by aerodynamic torque 
induced from the dynamics of the main rotor.  In 
this paper an engine model including the rotor 
dynamics is constructed for the T700-GE-700 
turboshaft engine powering UH-60 helicopter.  
The singular value decomposition(SVD) method is 
applied to the developed model in order to detect 
sensor faults.  The SVD method which do not 
need an additional computation to generate 
residual uses the characteristics that the system 
outputs in direction of the left singular vector if 
an input is applied in direction of the right 
singular vector.  Simulations show that the SVD 
method works well in detecting and isolating the 
sensor faults.

Nomenclature

  : rotational speed of power turbine, rpm
  : rotational speed of gas generator, rpm
  : station 3 total pressure, psi
 : station 4.5 temperature, degR
  : fuel flow, lbm/sec
    : moment of inertia of power turbine and 

associated accessories, ft-lbf-sec2

 : torque produced by compressor/ 
gas-generator, lbf-ft

 :torque produced by power turbine, lbf-ft
 : external torque to engine, lbf-ft
 : main rotor torque, lbf-ft

   : gear ratio
 : rotational speed of main rotor, rad/sec
  : design rotational speed of main rotor, 

rad/sec
  : ratio of flapping and lagging hinge location 

and blade length
  : undamped natural frequency of flapping 

motion, rad/sec
  : damping ratio of flapping motion
  : undamped natural frequency of lagging 

motion, rad/sec
  : damping ratio of lagging motion 

1. Introduction

Gas turbine engines have been used for 
propulsion systems of fixed wing and rotary wing 
aircraft.  Recent high performance gas turbine 
engine is controlled by a full authority digital 
engine control(FADEC) system.  Because a 
mechanical backup system is not employed for 
the engine equipped with FADEC a failure of 
FADEC system makes the engine uncontrollable 
and thereby causes the loss of aircraft.  Hence 
the fault tolerance against FADEC failure is very 
important.
  Most of engine control systems for helicopter 
turboshaft engines are equipped with dual sensors.  
For the system with dual redundancy, analytic 
methods are used to detect faults based on the 
system dynamical model.  The dynamics of small 
turboshaft engines are described by power turbine 
rotational speed and gas generator rotational 
speed.  While the gas generator speed is 
independent of the power turbine speed  the 
dynamics of power turbine are coupled with the 
gas generator speed and affected by external 
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torque.[1]  The external torque for helicopter is 
due to main rotor, tail rotor, and associated 
accessories.  The aerodynamic load induced from 
the rotor dynamics is the main source of external 
torque and only a small portion of external 
torque is produced by parts other than the main 
rotor.  The main rotor dynamics consists of 
flapping and lagging motion of blades.[2]  In this 
paper an engine model including rotor dynamics 
is constructed for the T700-GE-700 turboshaft 
engine powering UH-60 helicopter. 
  Since FADEC system under consideration has 
dual redundancy, analytic(or model based) 
methods are used to detect and isolate faults. The 
model based fault detection methods can be 
divided into three categories: parity method, 
parameter estimation method, and observer based 
method[3]. These methods require the calculation 
of the residuals from the input output data. 
Recently, the authors proposed a new fault 
detection method which utilize the SVD of the 
frequency response of the system and applied it 
to the FADEC system which included engine 
system only[4]. When the system input is 
sinusoidal, this method has advantage in the point 
that it does not require calculating residuals. In 
this  paper, we use the SVD based method to 
detect sensor fault for our FADEC system which 
considers both engine and rotor systems.

2. System Models

In this paper we consider a UH60 Helicopter 
described in ref. 5.  The UH60 is powered by 
two T700-GE-700 turboshaft engines.  Fig. 1 
shows interaction between engine and helicopter 
rotor system. Power turbine angular velocity,   

and acceleration,   are fed to the rotor system 
through gearbox.  Torque required to rotate the 
rotor with  and   acts as an external 
torque to engine.  It is assumed that tail rotor 
and accessories consume 10% of main rotor 
torque.  Constant    is introduced to convert 
RPM unit to rad/sec unit. The engine model and 
the main rotor model adopted in this paper are 

presented in ref. 1 and ref. 5, respectively.  
Those are implemented in forms of SIMULINK 
blocks. 
  The combined model is to be linearized along 
a trim point in order to apply fault detection 
scheme.  A trim condition has to be found for 
the combined model.  In the rotor model motion 
of each blade is considered.  Since each blade 
never reaches steady state, a trim for the rotor is 
not found in general sense but in sense of 
average over 1 revolution of rotor.  Hence trim 
conditions for rotor and engine are calculated 
separately. 

2.1 Rotor Model

At trim condition, the main rotor is assumed to 
rotate with designed rotor speed,  .  At given 
flight condition, we can find collective pitch 
angle, cyclic pitch angles which leads to trim in 
sense of average.    and   are perturbed 
respectively along the trim and rotor torque,   
is measured.  A linear model can be obtained 
from the measured   by applying the 
modified maximum likelihood parameter 
estimation(MMLE) technique[6].  
  Flight condition considered is hovering at sea 
level in standard atmosphere with total weight of 
16825lbf .  At trim

    rad/s,      lbf-ft      (1)

Fig. 2 depicts the measured   when pulse 
input of  with 0.5rad/sec amplitude from 2sec 

to 4sec and pulse input of   with 0.5rad/sec2 
amplitude from 6sec to 8sec are applied to the 
helicopter hovering at sea level in standard 
atmosphere.  Because the rotor dynamics are 
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Fig. 3 Rotor parameter estimation results

Fig. 4 Turboshaft engine

governed by flapping and lagging motion, we can 
describe the rotor model with observer canonical 
form[7] :
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The undamped natural frequencies of flapping and 
lagging motion are given by[5]

 

 

 ,     





For the UH60,   radsec, 
  radsec.  By using MMLE we obtain 

       ,   ,  2518
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Fig. 3 compares the measured  denoted by 
solid line with the estimated   from the linear 
model (2) and (3) denoted by dotted line.  Fig. 
3(a) shows   perturbed by pulse input of 
  and fig. 3(b) perturbed by pulse input of 
 .
 
2.2 Engine Model

T700-GE-700 Turboshaft engine shown in fig. 4 
is composed of compressor, combustor, gas 
generator, and power turbine.  Reference 3 
describes T700-GE-700 engine dynamics with 5 
state variables: gas generator speed, power turbine 
speed, and 3 pressures in compressor and gas 
generator.  For the rotor and the engine to be in 
trim, from fig. 1 

   

 ,  

     (4)

A trim condition of engine is calculated with 
equation (4) where   and   are the 
quantities at the rotor trim.
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  Linearized model along a trim condition has 5 
state variable as mentioned above.  However the 
dynamics of pressure can be neglected since 
pressure variables has much faster dynamics than 
gas generator and power turbine rotational speeds 
for a small turboshaft engine such as 
T700-GE-700.[5]  In addition the gas generator 
speed,   is independent of the power turbine 
speed,  .  Hence the linearized engine model 
is obtained as follows : 

        
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

    (5)

where     
 ,
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For a given flight condition, 
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Eigen values are -1.565 and -2.934 which are 
related to   and  , respectively.  Note that 
rotor flapping and lagging motions are much 
faster than the gas generator speed and power 
turbine speed.
  If  ,  ,  , and   are chosen to be 
measured, then measurement equation are
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                 (6)
where bars on the variables denote measured 

values of associated variables and units of   

and   are percent of designed values. 

2.3 Combined Model

From fig. 1

  

 ,  




    (7)

Combing equations (3), (5) and (7) yields

                      (8)
where
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Equation (2) can be rewritten as 

                         (9)
where
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Combining (8) and (9) we obtain a complete 
model : 
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Equation (10) is a 6-th order system.  As 
mentioned earlier, rotor state is much faster than 
engine state.  Neglecting the dynamics of rotor 
state we can reduce the order of equation (9) to 
second order.  Substituting     into (2) and 
(3) yields

  ∂
∂

 ∂
∂

   (11)

where
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Fig. 5 Responses of combined models
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Substituting (7) and (11) into (5) we obtain the 
reduced model as follows :

                          (12)

where 
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
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 and 

     





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
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For a hovering flight condition considered here

   ∂
∂

  , ∂
∂

 

Fig. 5 shows the responses of full nonlinear 
model, linearized model (10), and reduce order 
linearized model (12) for a pulse input of fuel 
flow.

3. Fault Detection

3.1 Sensor fault model

  When there are no faults, the linearized models 
of (10) and (12) can be rewritten as following 

general expression.

                        (13)
      (14)

where  ,   and   are the state vector, input 
vector and measurement vector, respectively.  
  The faults can be induced from system 
degradation, actuator fail, and sensor fail. In this 
paper, sensor fault is considered. The sensor 
faults can be described by multiplication and bias.  
The measurement equation (13) with faults can be 
written as

                (15)

where   is faulted output,   denotes 
multiplication type fault and   bias type fault. 
When there are scale factor error in sensor, 
multiplication and bias type faults exist. It is 
because the output in linear system in (14) is 
calculated from

      

and if there exist scale factor faults, the faulted 
output in (15) will be

       
     
   

where   is a wrong scale factor in case  ≠  . 
When there are bias in sensor, only the bias type 
faults exist in (15).

3.2 SVD based fault detection method

The singular value decomposition(SVD) has been 
used to describe the characteristics of multi input 
multi output linear systems in frequency 
domain[8].  The SVD is used to detect faults of 
linear  systems.
  The singular value of ×matrix   is 
defined as
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       ≻ 

where   is -th singular value and   is -th 
nonzero eigenvalue.  The  ‘s are sorted to 
satisfy following order

   …

Then   can be decomposed as 

   
 



 
 .

where  is a diagonal matrix which consists of 
singular values,   is left singular vector matrix, 
and   is right singular vector matrix. The 
singular vector matrices are unitary matrix, that is 
     and     .    and   denote 
 -th column vector of   and   respectively.
  The frequency response of a system is 
considered to apply the SVD in fault detection. 
The frequency response of system (13) and (14) 
is
                   (16)

For a single input linear time invariant system, if 
sin    is applied as an input the output will be 

     sin ∠       (17)

This result can be extended to multi input multi 
output system. 
  The SVD of  is represented as

                    (18)

Since  is known, the , , and 
 are also known. If    

   is applied  
to the system as an input, the output will be

          
 

     
 

   (19)

The relation      is used in (19). The 

-th element   of output vector   is

 
 

   sin  ∠   (20)

If faults exist, (20) will be distorted as 



 
  sin          (21)

where  ,   and   are amplitude, phase 
and bias of the distorted sine function and they 
are calculated from output and known  . If 
     ,   ∠   and 
   , there are no faults, otherwise there 
exist faults related to m-th measurement.  
  The SVD method does not need calculating the 
residuals because it uses the characteristics that 
the system outputs in direction of the left 
singular vector if an input is applied in direction 
of the right singular vector. However, it is noted 
that the SVD method require a periodic input 
signal to obtain the frequency response of a 
system at a fixed frequency.

3.3 Simulation 

Some simulations are performed to verify the 
performance of SVD based fault detection in 
FADEC system. The frequency of input is chosen 
as 10 rad/sec and hence the fuel flow is 
expressed as 

     sin    

,where    means the fuel flow at trimmed 
condition. Then the output will be also an 
periodic signal and the frequency will be the 
same as input frequency.
  Engine model combined with rotor dynamics at 
trim is described by one of linear systems (10) 
or (12).  (10) or (12) is the reference model of 
SVD based fault detection. Measurements are 
acquired from the nonlinear engine and rotor 
combined model. 
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  Fig. 6 ~ fig. 10 show  ,   and   
for each faults. The results of the system  
without faults are displayed in fig. 6 and show 
     ,  ∠   and 
   . The results for the models without and 
with rotor dynamics are almost same. The reason 
is that as shown in fig. 5 the responses of the 
two models are almost same since the rotor 
dynamics is very fast,  Therefore, from now, we 
discuss the results of the model without rotor 
dynamics.
  Consider the case when there is 10% scale 
factor fault in  . As shown in fig. 7, the 
 ,   and   associated with   
fluctuates and other values are the same as them 
of normal system.  Fig. 8 shows the results when 
there is 10% scale factor fault in  . In this 
case the  ,   and    corresponding to 
  only fluctuates.  For the bias type faults 
with magnitude of  10% of trimmed value as 
shown in fig. 9(  bias) and fig. 10(  bias), 
the  result show the same trend. Moreover it is 
possible to distinguish the scale factor faults and 
bias faults as shown in fig. 11 in which the 
  for   in case   bias faults is same as 
that of without faults but different from that of 
scale factor faults. Similarly the SVD work well 
in all other sensor bias fault. Summarizing the 
simulation results, the SVD based method can 
detect the occurrence of fault and moreover  
identify the sensor faulted and the types of faults.

4. Conclusions

A linearized engine model including rotor 
dynamics was constructed for the T700-GE-700 
turboshaft engine powering UH-60 helicopter.  
Simulation showed effects of flapping and lagging 
motion in the transient phase of the power 
turbine dynamics.   
  The singular value decomposition(SVD) method 
was applied to the developed model in order to 
detect sensor faults.  Simulations showed that the 
SVD method worked well in detecting and 
isolating the sensor faults.
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Fig. 6  ,   and   of normal system
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  Fig. 7  ,   and   of   10% scale 
factor fault
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 Fig. 8  ,   and   of   10% scale 
factor fault
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 Fig. 9  ,   and   of   10% bias 
fault
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 Fig. 10  ,   and   of   10% bias 
fault
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 Fig. 11   for   in case without,   scale 
factor and   bias faults 
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