DOI QR코드

DOI QR Code

CT 관류 영상 해석에서의 SVD 계수 임계화 기법의 성능 비교

Comparison of Thresholding Techniques for SVD Coefficients in CT Perfusion Image Analysis

  • 김낙현 (한국외국어대학교 디지털정보공학과)
  • Kim, Nak Hyun (Dept. of Digital Information Engineering, Hankuk University of Foreign Studies)
  • 투고 : 2013.02.25
  • 발행 : 2013.06.25

초록

Singular Value Decomposition (SVD) 기반의 디콘볼루션 방식은 CT 관류 영상 해석에서 가장 널리 사용되는 기법이다. 이 방식에서는 잡음의 영향을 줄이기 위해 SVD 계수를 임계화하는 과정이 사용된다. 이 때 임계화 경계치로 고정된 값을 사용하거나 미리 정해진 진동 지수(Oscillation Index)에 따른 경계치가 사용된다. 이들 두 임계화 방식은 계산량과 정확도 측면에서 서로 장단점을 가지고 있다. 본 논문에서는 두 임계화 방식의 정확도를 비교하기 위한 몬테 칼로 모의 실험 방식을 제안한다. 또한 관류 해석시 사용하는 평활화 과정이 알고리즘의 정확도에 미치는 영향을 측정하기 위해 이 실험 방식을 확장하였다. 본 논문에서는 이와 같은 성능 비교를 위한 모의 실험 방식을 제시하고, 모의 데이터와 실제 CT 영상에 대한 실험 결과를 소개한다.

SVD-based deconvolution algorithm has been known as the most effective technique for CT perfusion image analysis. In this algorithm, in order to reduce noise effects, SVD coefficients smaller than a certain threshold are removed. As the truncation threshold, either a fixed value or a variable threshold yielding a predetermined OI (oscillation index) is frequently employed. Each of these two thresholding methods has an advantage to the other either in accuracy or efficiency. In this paper, we propose a Monte Carlo simulation method to evaluate the accuracy of the two methods. An extension of the proposed method is presented as well to measure the effects of image smoothing on the accuracy of the thresholding methods. In this paper, after the simulation method is described, experimental results are presented using both simulated data and real CT images.

키워드

참고문헌

  1. K. A. Miles and M. R. Griffiths, "Perfusion CT: A worthwhile enhancement?", British J. of Radiology, Vol. 76, pp. 220-231, 2003. https://doi.org/10.1259/bjr/13564625
  2. E. G. Hoeffner et al, "Cerebral perfusion CT: Technical and clinical applications," Radiology, Vol. 231, pp. 632-644, 2004. https://doi.org/10.1148/radiol.2313021488
  3. D. G. Nabavi et al, "CT assessment of cerebral perfusion: Experimental validation and initial clinical experience," Radiology, Vol. 213, pp. 141-149, 1999. https://doi.org/10.1148/radiology.213.1.r99oc03141
  4. M. Wintermark et al, "Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable Xenon CT: A validation study," AJNR Am. J. Neuroradiol., Vol. 22, pp. 905-914, 2001.
  5. H.-J. Wittsack et al, "CT-perfusion imaging of the human brain: Advanced deconvolution analysis using circulant singular value decomposition," Computerized Med. Imaging and Graphics, Vol. 32, pp. 67-77, 2008. https://doi.org/10.1016/j.compmedimag.2007.09.004
  6. L. Ostergaard et al, "High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis," Magnetic Resonance in Medicine, Vol. 36, pp. 715-725, 1996. https://doi.org/10.1002/mrm.1910360510
  7. F. Calamante et al, "Measuring cerebral blood flow using magnetic resonance imaging techniques," J. of Cerebral Blood Flow and Metabolism, Vol. 19, pp. 701-735, 1999. https://doi.org/10.1097/00004647-199907000-00001
  8. A. M. Smith et al, "Whole brain quantitative CBF, CBV, and MTT measurements using MRI bolus tracking: Implementation and application to data acquired from hyperacute stroke patients," J. of Magnetic Resonance Imaging, Vol. 12, pp. 400-410, 2000. https://doi.org/10.1002/1522-2586(200009)12:3<400::AID-JMRI5>3.0.CO;2-C
  9. A. Fieselmann et al, "Deconvolution-based CT and MR brain perfusion measurement: Theoretical model revisited and practical implementation details," Int. J. of Biomedical Imaging, Vol. 2011, 2011.
  10. O. Wu et al, "Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix," Magnetic Resonance in Medicine, Vol. 50, pp. 164-174, 2003. https://doi.org/10.1002/mrm.10522
  11. H. L. Liu et al, "Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold," Magnetic Resonance in Medicine, Vol. 42, pp. 167-172, 1999. https://doi.org/10.1002/(SICI)1522-2594(199907)42:1<167::AID-MRM22>3.0.CO;2-Q
  12. L. Axel, "Cerebral blood flow determination by rapid-sequence computed tomography. A theoretical analysis," Radiology, Vol. 137, pp. 679-686, 1980. https://doi.org/10.1148/radiology.137.3.7003648