• 제목/요약/키워드: Singular point

검색결과 213건 처리시간 0.021초

보간 웨이블렛 기반의 Sparse Point Representation (Sparse Point Representation Based on Interpolation Wavelets)

  • 박준표;이도형;맹주성
    • 대한기계학회논문집B
    • /
    • 제30권1호
    • /
    • pp.8-15
    • /
    • 2006
  • A Sparse Point Representation(SPR) based on interpolation wavelets is presented. The SPR is implemented for the purpose of CFD data compression. Unlike conventional wavelet transformation, the SPR relieves computing workload in the similar fashion of lifting scheme that includes splitting and prediction procedures in sequence. However, SPR skips update procedure that is major part of lifting scheme. Data compression can be achieved by proper thresholding method. The advantage of the SPR method is that, by keeping even point physical values, low frequency filtering procedure is omitted and its related unphysical thresholing mechanism can be avoided in reconstruction process. Extra singular feature detection algorithm is implemented for preserving singular features such as shock and vortices. Several numerical tests show the adequacy of SPR for the CFD data. It is also shown that it can be easily extended to nonlinear adaptive wavelets for enhanced feature capturing.

THE METHOD OF ASYMPTOTIC INNER BOUNDARY CONDITION FOR SINGULAR PERTURBATION PROBLEMS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.937-948
    • /
    • 2011
  • The method of Asymptotic Inner Boundary Condition for Singularly Perturbed Two-Point Boundary value Problems is presented. By using a terminal point, the original second order problem is divided in to two problems namely inner region and outer region problems. The original problem is replaced by an asymptotically equivalent first order problem and using the stretching transformation, the asymptotic inner condition in implicit form at the terminal point is determined from the reduced equation of the original second order problem. The modified inner region problem, using the transformation with implicit boundary conditions is solved and produces a condition for the outer region problem. We used Chawla's fourth order method to solve both the inner and outer region problems. The proposed method is iterative on the terminal point. Some numerical examples are solved to demonstrate the applicability of the method.

TRIPLE POSITIVE SOLUTIONS OF SECOND ORDER SINGULAR NONLINEAR THREE-POINT BOUNDARY VALUE PROBLEMS

  • Sun, Yan
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.763-772
    • /
    • 2010
  • This paper deals with the existence of triple positive solutions for the nonlinear second-order three-point boundary value problem z"(t)+a(t)f(t, z(t), z'(t))=0, t $\in$ (0, 1), $z(0)={\nu}z(1)\;{\geq}\;0$, $z'(\eta)=0$, where 0 < $\nu$ < 1, 0 < $\eta$ < 1 are constants. f : [0, 1] $\times$ [0, $+{\infty}$) $\times$ R $\rightarrow$ [0, $+{\infty}$) and a : (0, 1) $\rightarrow$ [0, $+{\infty}$) are continuous. First, Green's function for the associated linear boundary value problem is constructed, and then, by means of a fixed point theorem due to Avery and Peterson, sufficient conditions are obtained that guarantee the existence of triple positive solutions to the boundary value problem. The interesting point is that the nonlinear term f is involved with the first-order derivative explicitly.

A Singular Nonlinear Boundary Value Problem

  • Kwak, Do Young;Choi, U Jin
    • 충청수학회지
    • /
    • 제2권1호
    • /
    • pp.9-14
    • /
    • 1989
  • Certain type of singular two point boundary value problem is studied. This contains a wider class of differential equations than [5]. An example is provided for comparison with earlier results.

  • PDF

EXISTENCE OF POSITIVE SOLUTIONS FOR GENERALIZED LAPLACIAN PROBLEMS WITH A PARAMETER

  • Kim, Chan-Gyun
    • East Asian mathematical journal
    • /
    • 제38권1호
    • /
    • pp.33-41
    • /
    • 2022
  • In this paper, we study singular Dirichlet boundary value problems involving ϕ-Laplacian. Using fixed point index theory, the existence of positive solutions is established under the assumption that the nonlinearity f = f(u) has a positive falling zero and is either superlinear or sublinear at u = 0.

NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS ARISING IN CHEMICAL REACTOR THEORY

  • Andargie, Awoke
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.411-423
    • /
    • 2010
  • In this paper, a numerical method for singular perturbation problems arising in chemical reactor theory for general singularly perturbed two point boundary value problems with boundary layer at one end(left or right) of the underlying interval is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

EXISTENCE OF SOLUTIONS OF A CLASS OF IMPULSIVE PERIODIC TYPE BVPS FOR SINGULAR FRACTIONAL DIFFERENTIAL SYSTEMS

  • Liu, Yuji
    • Korean Journal of Mathematics
    • /
    • 제23권1호
    • /
    • pp.205-230
    • /
    • 2015
  • A class of periodic type boundary value problems of coupled impulsive fractional differential equations are proposed. Sufficient conditions are given for the existence of solutions of these problems. We allow the nonlinearities p(t)f(t, x, y) and q(t)g(t, x, y) in fractional differential equations to be singular at t = 0, 1 and be involved a sup-multiplicative-like function. So both f and g may be super-linear and sub-linear. The analysis relies on a well known fixed point theorem. An example is given to illustrate the efficiency of the theorems.

Statistical Inference in Non-Identifiable and Singular Statistical Models

  • Amari, Shun-ichi;Amari, Shun-ichi;Tomoko Ozeki
    • Journal of the Korean Statistical Society
    • /
    • 제30권2호
    • /
    • pp.179-192
    • /
    • 2001
  • When a statistical model has a hierarchical structure such as multilayer perceptrons in neural networks or Gaussian mixture density representation, the model includes distribution with unidentifiable parameters when the structure becomes redundant. Since the exact structure is unknown, we need to carry out statistical estimation or learning of parameters in such a model. From the geometrical point of view, distributions specified by unidentifiable parameters become a singular point in the parameter space. The problem has been remarked in many statistical models, and strange behaviors of the likelihood ratio statistics, when the null hypothesis is at a singular point, have been analyzed so far. The present paper studies asymptotic behaviors of the maximum likelihood estimator and the Bayesian predictive estimator, by using a simple cone model, and show that they are completely different from regular statistical models where the Cramer-Rao paradigm holds. At singularities, the Fisher information metric degenerates, implying that the cramer-Rao paradigm does no more hold, and that he classical model selection theory such as AIC and MDL cannot be applied. This paper is a first step to establish a new theory for analyzing the accuracy of estimation or learning at around singularities.

  • PDF

POSITIVE SOLUTION FOR SYSTEMS OF NONLINEAR SINGULAR BOUNDARY VALUE PROBLEMS ON TIME SCALES

  • Miao, Chunmei;Ji, Dehong;Zhao, Junfang;Ge, Weigao;Zhang, Jiani
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제16권4호
    • /
    • pp.327-344
    • /
    • 2009
  • In this paper, we deal with the following system of nonlinear singular boundary value problems(BVPs) on time scale $\mathbb{T}$ $$\{{{{{{x^{\bigtriangleup\bigtriangleup}(t)+f(t,\;y(t))=0,\;t{\in}(a,\;b)_{\mathbb{T}},}\atop{y^{\bigtriangleup\bigtriangleup}(t)+g(t,\;x(t))=0,\;t{\in}(a,\;b)_{\mathbb{T}},}}\atop{\alpha_1x(a)-\beta_1x^{\bigtriangleup}(a)=\gamma_1x(\sigma(b))+\delta_1x^{\bigtriangleup}(\sigma(b))=0,}}\atop{\alpha_2y(a)-\beta_2y^{\bigtriangleup}(a)=\gamma_2y(\sigma(b))+\delta_2y^{\bigtriangleup}(\sigma(b))=0,}}$$ where $\alpha_i$, $\beta_i$, $\gamma_i\;{\geq}\;0$ and $\rho_i=\alpha_i\gamma_i(\sigma(b)-a)+\alpha_i\delta_i+\gamma_i\beta_i$ > 0(i = 1, 2), f(t, y) may be singular at t = a, y = 0, and g(t, x) may be singular at t = a. The arguments are based upon a fixed-point theorem for mappings that are decreasing with respect to a cone. We also obtain the analogous existence results for the related nonlinear systems $x^{\bigtriangledown\bigtriangledown}(t)$ + f(t, y(t)) = 0, $y^{\bigtriangledown\bigtriangledown}(t)$ + g(t, x(t)) = 0, $x^{\bigtriangleup\bigtriangledown}(t)$ + f(t, y(t)) = 0, $y^{\bigtriangleup\bigtriangledown}(t)$ + g(t, x(t)) = 0, and $x^{\bigtriangledown\bigtriangleup}(t)$ + f(t, y(t)) = 0, $y^{\bigtriangledown\bigtriangleup}(t)$ + g(t, x(t)) = 0 satisfying similar boundary conditions.

  • PDF