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THE METHOD OF ASYMPTOTIC INNER BOUNDARY

CONDITION FOR SINGULAR PERTURBATION PROBLEMS

AWOKE ANDARGIE* AND Y.N. REDDY

Abstract. The method of Asymptotic Inner Boundary Condition for Sin-
gularly Perturbed Two-Point Boundary value Problems is presented. By
using a terminal point, the original second order problem is divided in to
two problems namely inner region and outer region problems. The original
problem is replaced by an asymptotically equivalent first order problem
and using the stretching transformation, the asymptotic inner condition in
implicit form at the terminal point is determined from the reduced equation
of the original second order problem. The modified inner region problem,
using the transformation with implicit boundary conditions is solved and
produces a condition for the outer region problem. We used Chawla’s
fourth order method to solve both the inner and outer region problems.
The proposed method is iterative on the terminal point. Some numerical
examples are solved to demonstrate the applicability of the method.

AMS Mathematics Subject Classification : 65L10.
Key word and phrases : Singular perturbation problems, Finite Differences,
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1. Introduction

The numerical solution of singular perturbation problems is currently a field
in which active research is going on. Singular perturbation problems are of com-
mon occurrence in fluid mechanics (boundary layer theory) and other branches
of Applied Mathematics. A wide variety of papers and books are available,
describing varies techniques for solving singular perturbation problems, among
these one can refer Bellman [2], Bender and Orsazag [3], Hinch [6], Kadalbajo
and Reddy [7-8], Kevorkian and Cole [9], O’Malley [112], Nayfah [10-11] and Van
Dyke [14]. Several authors published papers on solving SSP by dividing the do-
main of definition of the problem into non-overlapping subintervals called outer
and inner regions, among these; we mention Awoke and Reddy [1], Chakravarthy
and Reddy [4], Vigo-aguiar and Natesan [15] and Wang [16] .
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In the present paper, the method of an Asymptotic Inner Boundary Condition
for Singularly Perturbed two point Boundary value Problems with the boundary
layer at the left is presented. The method consists of the following steps: (1) The
original second order problem is divided in to two problems, an inner region and
an outer region problem using a terminal point. (2) The original second order
problem is replaced by an asymptotically equivalent first order problem. (3) Us-
ing the stretching transformation, the asymptotic inner condition in mixed form
at the terminal point is determined from the reduced equation of the original
second order problem. (4) The modified inner region problem (using the trans-
formation) with mixed boundary conditions is solved and produces a condition
for the outer region problem. (5) The outer region problem is solved as a two
point boundary value problem. Finally, we combine the solutions of both the
inner region and outer region problems to get the approximate solution of the
original problem. The present method is iterative on the terminal point. We
repeat the process (numerical scheme) for various choices of the terminal point,
until the solution profiles do not differ materially from iteration to iteration.

2. The method of asymptotic inner boundary condition

Consider a linear singularly perturbed two-point boundary value problem of
the form:

εy′′(x) + [a(x)y(x)]′ = h(x), x ∈ [0, 1] (1)

with

y(0) = α, (2a)

and, y(1) = β; (2b)

where ε is a small positive parameter (0 < ε << 1)and ai, i = 1, .., 4, α, β are
known constants. We assume that a(x) and h(x) are sufficiently continuously
differentiable functions in [0,1]. Further more, we assume that a(x) ≥ M > 0
throughout the interval [0,1], where M is some positive constant. Under this
assumptions,(1) has a unique solution y(x) which in general, displays a boundary
layer of width O( ε) at x = 0 for small values of ε˙
As mentioned the method consists of the following steps:
Step 1: Dividing the original problem in to two regions, an inner region and
outer region problem. Let xp be the terminal point or width or thickness of
the boundary layer (inner region), then the inner and outer region problems are
defined on 0 ≤ x ≤ xp and xp ≤ x ≤ 1 respectively.
Step 2: Replace the original second order problem (8.1) by an asymptotically
equivalent first order problem as follows: Integrating (8.1), we get

εy′(x) + a(x)y(x) = f(x) +K (3)

Where f(x) =
∫
h(x)dx and K is a constant to be determined.

The constant K can be determined by introducing the boundary condition y(1)
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in to the reduced equation of (3).
i.e a(1)y(1) = f(1) +K

K = a(1)y(1)− f(1) (4)

Note that, this choice of K ensures that the solution of the reduced problem of
(1) satisfies the reduced problem of (3). Thus (3) can be written as:
εy′(x) + a(x)y(x) = f(x) +K,whereK = a(1)y(1) − f(1) Step 3: Determining
the asymptotic inner boundary condition
To determine the asymptotic inner condition, we take the transformation

t = x/ε (5)

to produce a new differential equation. By using (5), we transform equations (1)
and (3) with

y(x) = y(tε) = Y (t) (6a)

y′(x) = y′(tε)
ε = Y ′(t)

ε (6b)

y′′(x) = y′′(tε)
ε2 = Y ′′(t)

ε (6c)

a(x) = a(tε) = A(t) (6d)

a′(x) = a′(tε)
ε = A′(t)

ε (6e)

f(x) = f(tε) = F (t) (6f)

h(x) = h(tε) = H(t) (6g)

to obtain the new differential equations

Y ′′(t) + [(A(t)Y (t)]′ = εH(t) (7)

and

Y ′(t) +A(t)Y (t) = F (t) +K (8)

At t = tp = xp/ε , equation (8) will take the form

c1Y (tp) + Y ′(tp) = c2 (9a)

where c1 = A(tp) and c2 = F (tp) +K (9b)

Equation (9) which is in implicit form is taken as an asymptotic inner condi-
tion at the terminal point t = tp = xp/ε.
Step 4: Solving the inner region problem: Now we solve the inner region problem:

Y ′′(t) + [(A(t)Y (t)]′ = εH(t) (10)

Where

Y (0) = y(0) = α (11a)

and c1Y (tp) + Y ′(tp) = c2 (11b)

By solving (10) - (11), we get the value Y (tp) = y(xp) and we take it as one
boundary condition to solve the outer region problem.
Denote Y (tp) = y(xp) = δ
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Step 5: Solving the outer region problem: Since x = xp is a common point to
both the inner and outer region, we set the outer region problem as:

εy′′(x) + [a(x)y(x)]′ = h(x), xp ≤ x ≤ 1 (12)

with

Y (xp) = δ (13a)

and y(1) = β (13b)

Solution of the original problem:
To solve the two-point boundary value problems given in equations (10)-(11)
[inner region problem] and (12)-(13) [outer region problem), we used Chawla’s
[5] fourth- order finite difference method. In fact, any standard analytic or
numerical method can be used. Finally, we combine the solutions of both the
inner region (0 ≤ x ≤ xp) and outer region (xp ≤ x ≤ 1) problems to get the
approximate solution of the original problem. We repeat the process (numerical
scheme) for various choices of x + p , until the solution profile do not differ
materially from iteration to iteration. For computational point of view, we use
an absolute error criterion, namely

/Y m+1(t)− Y m(t))/ ≤ σ, 0 ≤ t ≤ tp (14)

Where ym(x) = the solution for the mth iterate of xp and σ= the prescribed
tolerance bound.

3. Fourth-Order Difference Scheme

A finite difference scheme is often a convenient choice for the numerical solu-
tion of two point boundary value problems. We used Chawla’s [5] fourth- order
finite difference method to solve the inner and outer region problems.
Inner region problem: We can rewrite equations (10)-(11)in the form :

Y ′′(t) = εH(t)−A(t)Y ′(t)−A′(t)Y (t) = g(t, Y, Y ′) (15)

With Y (0) = y(0) = α
and c1Y (tp) + Y ′(tp) = c2
We divide the interval0 ≤ t ≤ tp into N equal parts with constant mesh length
h. Let 0 = t0, t1, ..., tN = tp be the mesh points. Then we have ti = ih ; i=0, 1,
2,..., N.
Let us denote the exact solution Y (t) at the grid points ti by Yi ; similarly,
Y ′
i = Y ′(ti).

For i=1,2, ..., N-1, let
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Y
′
i =

Yi+1−Yi−1

2h (16a)

Y
′
i+1 = 3Yi+1−4Yi+Yi−1

2h (16b)

Y
′
i−1 = −Yi+1+4Yi−3Yi−1

2h (16c)

Y
′
i = Y

′
i − h

20 (gi+1 − gi−1) (16d)

Then for each ti,i = 1, 2, ..., N − 1 (15) can be described as:

1

h2
δ2Yi =

1

12
(gi+1 + 10gi + gi−1) (17)

Where

gi = g(xi, Yi, Y
′
i) (18a)

and gi±1 = g(xi±1, Yi±1, Y
′
i±1) (18b)

Using (16) and (18), terms of the right hand side expressions of (17) can be
simplified as:

1
12gi+1 = εHi+1

12 − (Ai+1

8h +
A′

i+1

12 )Yi+1 +
Ai+1

6h Yi − Ai+1

24h Yi−1 (19a)
10
12gi = KiYi−1 + LiYi +MiYi+1 +

10
12εHi +

hAi

24 εHi+1 − hAi

24 εHi−1 (19b)

1
12gi−1 = εHi−1

12 + Ai−1

24h Yi+1 − Ai−1

6h Yi + (Ai−1

8h − A′
i−1

12 )Yi−1 (19c)

Where

Ki =
10Ai

24h − AiAi+1

48 − AiAi−1

16 +
hAiA

′
i−1

24

Li =
Ai(Ai+1+Ai−1)−10A′

i

12

Mi = − 10Ai

24h − AiAi+1

24h − hAiA
′
i+1

24 − AiAi−1

48

Now substituting (19) in (17) we get:

1

h2
(Yi−1 − 2Yi + Yi+1) = CiYi−1 +DiYi + PiYi+1 + Si (20)

Where

Ci =
−Ai+1+10Ai

24h − AiAi+1

48 − AiAi−1

16 +
hAiA

′
i−1

24 + Ai−1

8h − A′
i−1

12

Di =
Ai+1

6h +
Ai(Ai+1+Ai−1)−10A′

i

12 − Ai−1

6h

Pi =
−Ai+1

8h − A′
i+1

12 − 10Ai

24h − AiAi+1

16 − hAiA
′
i+1

24 − AiAi−1

48 + Ai−1

24h

Si =
ε(Hi+1+10Hi+Hi−1)

12 + εhAi(Hi+1−Hi−1)
20
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From equation (20) we get the recurrence relation of the form:

EiYi−1 − FiYi +GiYi+1 = Ri; i = 1, 2.., N (21)

Where

Ei =
1
h2 + (Ai+1−10Ai)

24h + AiAi+1

48 + AiAi−1

16 − hAiA
′
i−1

24 − Ai−1

8h +
A′

i−1

12 (22a)

Fi =
2
h2 + (Ai+1−Ai−1)

6h +
Ai(Ai+1+Ai−1)−10A′

i

12 (22b)

Gi =
1
h2 + Ai+1

8h +
A′

i+1

12 + (10Ai−Ai−1)
24h +

hAiA
′
i+1

24 + AiAi+1

16 + AiAi−1

48 (22c)

Ri =
ε(Hi+1+10Hi+Hi−1)

12 + εhAi(Hi+1−Hi−1)
24 (22d)

Equation (21) gives a system of N equations with N+1 unknown’s Y1 to YN

and the unwanted unknown YN+1. To eliminate the unknown YN+1, we make
use of the equation (11b) given as boundary conditions in implicit form.
By employing the second order central difference approximation in (11b), we get

c1YN +
YN+1 − YN−1

2h
= c2 and YN+1 = YN−1 − 2hc1YN + 2hc2

(23)

Where c1 and c2 are defined in (9b). Making use of (23) in the last equation of
the recurrence relation (21) at i = N , we get

(EN +GN )YN−1 − (FN + 2hc1GN )YN = RN − 2hc2GN (24)

Now, equations (21) and (24) give an N by N tri-diagonal system which can be
solved by using Thomas Algorithm.
The outer region Problem: A similar approach to outer region problem (12)-(13)
produces the recurrence relation

EiYi−1 − FiYi +GiYi+1 = Ri; i = 1, 2.., N − 1 (25)

Where

Ei =
ε
h2 + (ai+1−10ai)

24h + aiai+1

48 + aiai−1

16 − haia
′
i−1

24 − ai−1

8h +
a′
i−1

12 (26a)

Fi =
2ε
h2 + (ai+1−ai−1)

6h +
ai(ai+1+ai−1)−10a′

i

12 (26b)

Gi =
ε
h2 + ai+1

8h +
a′
i+1

12 + (10ai−ai−1)
24h +

haia
′
i+1

24 + aiai+1

16 + aiai−1

48 (26c)

Ri =
(hi+1+10hi+hi−1)

12 + hai(hi+1−hi−1)
24 (26d)

Where the interval xp ≤ x ≤ 1 is subdivided in to N subintervals of equal mesh,

h =
1−xp

N . To solve the tri diagonal system (25), we used Thomas Algorithm.
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4. Numrical Examples

Example 4.1: Consider the following singular perturbation problem from
Kevorkian and Cole [[9] Page 33 equations 2.3.26 and 2.3.27 with α = 0].

εy′′(x) + y′(x) = 0, 0 ≤ x ≤ 1 ;with y(0) = 0 and y(1) = 1 (27)

Integrating (27) we get εy′(x) + y(x) = K. Using (4), the value of K is K=1.
Using the transformation t = x

ε The Inner region problem is: Y ′′(t) + Y ′(t) =
0, 0 ≤ t ≤ tp with Y (0) = 0 and Y (tp) + Y ′(tp) = 1. The outer region problem
is: εy”(x) + y′(x) = 0, xp ≤ x ≤ 1, with y(xp = Y (tp) and y(1) = 1. The exact

solution is given by: y(x) = 1−exp(−x/ε)
1−exp(−1/ε) . Numerical results are presented in

tables 1a and 1b for ε =10−3 and ε=10−4 respectively.

Example 4.2: Consider the following singular perturbation problem from
fluid dynamics for fluid of small viscosity, Reinhardt [13, Example 2].

εy′′(x) + y′(x) = 1 + 2x;x ∈ [0, 1] with y(0) = 0 and y(1) = 1 (28)

Integrating (28) we get εy′(x) + y(x) = x + x2 + K. Using (4), the value of
K is K = −1. Using the transformation t = x

ε c1 = 1 and c2 = εtp + ε2t2p − 1.
The Inner region problem is: Y ′′(t) + Y ′(t) = ε(1 + 2εt), 0 ≤ t ≤ tp with
Y (0) = 0 and Y (tp) + Y ′(tp) = εtp + ε2t2p − 1 The outer region problem is:
εy”(x)+y′(x) = 1+2x, xp ≤ x ≤ 1 , with y(xp = Y (tp) and y(1) = 1. The exact

solution is given by y(x) = x(x+1− 2ε)+ (2ε− 1)( 1−exp(−x/ε)
1−exp(1/ε ). The numerical

results are given in tables 2(a), 2(b) for ε = 10−3 and ε = 10−4 respectively.

Example 4.3: Consider the following singular perturbation problem from
Kevorkian and Cole [9, Page 33 equations 2.3.26 and 2.3.27 with α = −1/2].

εy′′(x) + (1− x

2
)y′(x)− 1

2
y(x) = 0;x ∈ [0, 1] with y(0) = 0 and y(1) = 1

(29)

Equation (29) can be rewritten in the form of (1) as:

εy′′(x) + [(1− x

2
)y(x)]′ = 0 (30)

Integrating (30) we get εy′(x) − (1 − x
2 )y(x) = K. Using (4), the value of K

is K = (1 − 1/2)y(1) = 1/2. Using the transformation t = x
ε , A(t) = 1 − εtp

2

and F (t) = 0, c1 = A(t) = 1 − εtp
2 and c2 = K = 1

2 . The Inner region

problem is Y ′′(t) + (1 − εt
2 )Y

′(t) − ε
2 = 0, 0 ≤ t ≤ tp with Y (0) = 0 and

(1− εtp
2 )Y (tp)+Y ′(tp) = 0. The outer region problem is εy′′(x)+(1− x

2 )y
′(x)−

1
2y(x) = 0, xp ≤ x ≤ 1 , with y(xp = Y (tp) and y(1) = 1. The exact solution

is given by y(x) = 1
2−x − 1

2 exp(−
(x− x2

4 )

ε ). The numerical results are given in

tables 3(a), 3(b) for ε = 10−3 and ε = 10−4 respectively.
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5. More General Class of Problems

The present method is extended to more general class of singular perturbation
problems of the form:

εy′′(x) + [a(x)y(x)]′ + b(x)y(x) = h(x); forxε[0, 1] (31)

with

y(0) = α, (32a)

and, y(1) = β (32b)

where ε is a small positive parameter(0 < ε << 1) and αandβ are known
constants and a(x), b(x) and h(x) are assumed to be sufficiently continuously
differentiable functions in [0,1] and a(x) ≥ M > 0throughout the interval [0,1],
where M is some positive constant.
In these types of problems, we can’t apply the integration process in Step 2 of
the present method due to the presence of the term b(x)y(x). So, we need to
modify equation (31) to the form of equation (1) and then apply the present
method. We treated as follows:
Let y0 be the solution of the reduced problem of (31)-(32); that is

[[a(x)y0(x)]
′ + b(x)y0(x) = h(x) (33)

with

y0(1) = β (34)

Next, set up the approximate equation to the given equation (31) as:

εy′′(x) + [a(x)y(x)]′ + b(x)y0(x) = h(x) (35)

Where we have simply replaced the y(x) term by y0(x)( the solution of the
reduced problem (31-32)). Then equation (35) can be rewritten in the form of
equation (1) as:

εy′′(x) + [a(x)y(x)]′ = s(x) (36)

Where s(x) = h(x)− b(x)y0
Finally, we apply the present method to solve the modified problem (36)-(32)
and justified by solving the following two problems.

Example 5.1: Consider the following singular perturbation problem from
Bender and Orszag [[1], page 480, Problem 9.17 with α=0].

εy′′(x) + y′(x)− y(x) = 0; forxε[0, 1] with y(0) = 1 and y(1) = 1 (37)

The modified form of equation (37) is :

εy′′(x) + y′(x)− y0(x) = 0 (38)

Where y0(x) = exp(x− 1) is the solution of the reduced problem of (37)
That is’

y′0(x)− y0(x) = 0 with y0(0) = 1 (39)
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Then we rewrite equation (37) in the form of (1) as:

εy′′(x) + y′(x) = exp(x− 1) (40)

By integrating (40), we get

εy′(x) + y(x) = exp(x− 1) +K (41)

Using equation (4) we determine K asK = a(1)y(1)−f(1) = (1)(1)−exp(1−1) =
0
Inner region problem: using the transformation t = x

ε , we get the inner region
problem:

Y ′′(t) + Y ′(t) = exp(εt− 1), for 0 ≤ t ≤ tp (42)

with

y(0) = 1, (43a)

Y (tp) + Y ′(tp) = exp(εtp − 1) (43b)

Outer region problem:

εy′′(x) + y′(x) = exp(x− 1), for xp ≤ x ≤ 1 (44)

with y(xp = Y (tp) and y(1) = 1

The exact solution is given by: y(x) = (exp(m2−1) exp(m1x))+(1−exp(m1)) exp(m2x)
exp(m2)−exp(m1)

where m1 = −1+
√
1+4ε

2ε and m2 = −1−√
1+4ε

2ε

The numerical results are given in tables 4(a), 4(b) for ε = 10−3and ε = 10−4

respectively.

Example 5.2: Consider the following singular perturbation problem from
which has earlier been solved by Reinhardt [13].

εy′′(x) + y′(x) + y(x) = 0; for xε[0, 1] with y(0) = 1 and y(1) = 2 (45)

The modified form of equation (45) is :

εy′′(x) + y′(x) + y0(x) = 0 (46)

Where y0(x) = 2 exp(1− x) is the solution of the reduced problem of(46)
That is’

y′0(x) + y0(x) = 0 with y0(1) = 2 (47)

Then we rewrite equation (45) in the form of (1) as:

εy′′(x) + y′(x) = −2 exp(1− x) (48)

By integrating (48), we get

εy′(x) + y(x) = 2 exp(1− x) +K (49)
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Using equation (4) we determine K as K = y(1)− 2 exp(1− 1) = 0
Inner region problem: using the transformation t = x

ε , we get the inner region
problem:

Y ′′(t) + Y ′(t) = ε(−2 exp(1− εt)), for 0 ≤ t ≤ tp (50)

with

y(0) = 1, (51a)

and, Y (tp) + Y ′(tp) = 2 exp(1− εtp) (51b)

Outer region problem:

εy′′(x) + y′(x) = −2 exp(1− x), for xp ≤ x ≤ 1 (52)

with y(xp = Y (tp) and y(1) = 2

The exact solution is given by: y(x) = (2−exp(m2) exp(m1x))+(1−exp(m1−2)) exp(m2x)
exp(m1)−exp(m2)

where m1 = −1+
√
1+4ε

2ε and m2 = −1−√
1+4ε

2ε

The numerical results are given in tables 5(a), 5(b) for ε = 10−3and ε = 10−4

respectively.

6. Conclusions

We have described the method of asymptotic inner boundary condition for
the numerical solution of a class of singular perturbation problems. As men-
tioned the method is iterative on the terminal point and the process is to be
repeated for different values of (the terminal point which is not unique), until
the solution profile stabilizes in both the inner and outer region. We have im-
plemented the present method first on three problems with left boundary layer
and extended to two more general classes of problems, by taking different val-
ues of .We have tabulated error tables for the numerical results. From the table,
it is observed that the present method approximates the exact solution very well.

Table 1. Maximum Errors for Example 4.1
tp = 1 tp = 5 tp = 10

ε Inner Outer Inner Outer Inner Outer
10−3 1.01E-05 5.36E-05 2.70E-05 5.36E-05 1.19E-03 5.30E-05
10−4 1.01E-05 5.36E-04 2.70E-05 5.36E-04 1.19E-03 5.36E-04

Table 2. Maximum Errors for Example 4.2
tp = 1 tp = 5 tp = 10

ε Inner Outer Inner Outer Inner Outer
10−3 1.88E-03 5.38E-04 2.96E-03 5.38E-04 2.56E-03 5.38E-04
10−4 6.68E-04 9.91E-05 1.63E-03 1.08E-04 2.39E-03 1.08E-04
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Table 3. Maximum Errors for Example 4.3
tp = 1 tp = 5 tp = 10

ε Inner Outer Inner Outer Inner Outer
10−3 8.98E-04 2.19E-03 3.87E-04 2.19E-03 3.87E-04 2.19E-03
10−4 5.63E-04 1.25E-04 6.58E-04 1.25E-04 1.74E-03 1.25E-04

Table 4. Maximum Errors for Example 5.1
tp = 1 tp = 5 tp = 10

ε Inner Outer Inner Outer Inner Outer
10−3 2.38E-04 1.54E-03 7.16E-04 1.54E-03 1.16E-03 1.54E-03
10−4 2.84E-05 3.30E-04 7.61E-05 3.30E-04 5.11E-04 3.30E-04

Table 5. Maximum Errors for Example 5.2
tp = 1 tp = 5 tp = 10

ε Inner Outer Inner Outer Inner Outer
10−3 1.58E-03 3.69E-03 1.60E-03 3.69E-03 6.28E-03 3.69E-03
10−4 1.07E-04 1.89E-03 1.21E-04 1.89E-03 6.47E-03 1.89E-03
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