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NUMERICAL METHOD FOR SINGULAR PERTURBATION
PROBLEMS ARISING IN CHEMICAL REACTOR THEORY

AWOKE ANDARGIE

ABSTRACT. In this paper, a numerical method for singular perturbation
problems arising in chemical reactor theory for general singularly perturbed
two point boundary value problems with boundary layer at one end( left
or right) of the underlying interval is presented. The original second order
differential equation is replaced by an approximate first order differential
equation with a small deviating argument. By using the trapezoidal for-
mula we obtain a three term recurrence relation, which is solved using
Thomas Algorithm. To demonstrate the applicability of the method, we
have solved four linear (two left and two right end boundary layer) and
one nonlinear problems. From the results, it is observed that the present
method approximates the exact or the asymptotic expansion solution very
well.
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1. Introduction

The numerical treatment of singular perturbation problems has been far from
trivial, because of the boundary layer behavior of the solutions. However, the
area of singular perturbation is of increasing interest to applied mathemati-
cians. The survey paper of Kadalbajoo and Reddy [5] and M.K.Kadalbajoo,
K.C.Patidar[6], gives an erudite outline of the singular perturbation problems.
For detailed discussion on the analytic theory of general singular perturbation
problems, one may refer to Bender and Orsazag [1], Kevorkian and Cole [3],
Nayfeh [7-8], O’Mally [9] and Van Dyke [10].

A numerical method for singular perturbation problems in arising in chem-
ical reactor theory for general singularly perturbed two point boundary value
problems with boundary layer at one end (left or right) of the underlying in-
terval is presented. The motivation impulse for this method was to provide the
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practicing engineer or applied mathematician withy a means of solving more
general class of singular perturbation problems in a routine manner. As a part
of continuing effort to determine the applicability and the limitations of the in-
tegration method, we have been attempting to solve more general singularly
perturbed two point boundary value problems in ordinary differential equa-
tions. Typically, these problems arise very frequently in fluid mechanics, elas-
ticity, chemical reactor theory and many other allied areas. For example: the
singular perturbation problems with mixed boundary conditions of the form:
ey’ (z) + p()y () + q(z)y(z) = f(z),z€[0,1] with 1/ (z) — ay(0) = « and
y'(1) + by(1) = B arise in the study of adiabatic tubular chemical flow reac-
tors with axial diffusion. O’Malley [9] obtained the asymptotic solution y(z, ¢),
which converges to yo(x), z€[0,1], of the reduced problem, while y(xz,€) con-
verges non-uniformly as ¢ — 0 either at ,(i.e x=0, p(x) > M > 0 or at x=1,
p(z) < M <0).

In this method, the original second order differential equation is replaced by an
approximate first order differential equation with a small deviating argument.
By using the trapezoidal formula we obtain a three term recurrence relation,
which is solved using Thomas Algorithm To demonstrate the applicability of the
method, we have solved four linear (two left and two right end boundary layer)
and one nonlinear problems. From the results, it is observed that the present
method approximates the exact or the asymptotic expansion solution very well.

2. Left boundary layer

To describe the method we considered the following singular perturbation
problem with mixed boundary conditions:

ey’ (z) + a(z)y (z) + b(z)y(z) = f(z),z € [0,1] ey

with
a1y(0) + a2y (0) = o, (2a)
and, azy(l) +asy/(1) =0 (2b)

where ¢ is a small positive parameter (0 < ¢ << 1)and a;,7 = 1,..,4,0, § are
known constants. We assume that a(z),b(z) and f(z) are sufficiently contin-
uously differentiable functions in [0,1]. Further more, we assume that a(z) >
M > 0 throughout the interval [0,1], where M is some positive constant. This
assumptions merely implies that the boundary layer will be in the neighborhood
of x=0.

Let 0 be a small deviating argument (0 < § << 1). By using Taylor series
expansion of order 2 in the neighborhood of the point z, we get

Y (z—0) =y (z) - 0y’ (2) ®3)
Substituting equation (3) in to equation (1), we get
ey (z) — ey (z — 9) + da(x)y' (z) + ob(x)y(z) = 6f () (4)
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We rewrite equation (4) in the form
!

y(z) = p(x)y(x — ) + q(x)y(x) + r(z), for §<z <1 (5)
where
€
p(z) = =+ oaz) (6a)
s
and,r(z) = 5—1—5(&() ] (6c)

Equation (5) is a first order differential equation replacing the second order
differential equation (1) with a small deviating argument. Transition from (1)
to (5) is admitted, because of the condition that 4 is small (0 < § << 1). This
replacement is significant from the computational point of view. Further theo-
retical discussion and details on the validity of this transition can be referred in
Elsgolts and Norkin[4].

Now we divide the interval [0,1] in to N equal subintervals of mesh size h =
1/N so that z; = ih, i = 0,1,2,..., N. Integrating equation (5) in the
subinterval[z;, ©;41], ¢ = 0,1, 2, ..., N, we get

Y(xit1) = y(@i) = pir1y(ig1 — ) — plas)y(z: — 6)

* /Ii+1 [=p'(@)y(z - 0) + ql@)y(z) + r(z)] dz.

i

(7)

Using the Trapezoidal formula for evaluating the integral approximately, we get
Y(@iv1) — Y(@i) = pir1y(Tita — ) — piy(z; — 0)

+ 2P i~ 8) @)yl — 0) ®

+alo(e)yl@in) + almy(a)] + 5Ir(En) + ()

Again, we make use of the Taylor series expansion of order 1 on y(z — &) and we
get

y(z = 0) ~ y(z) - 0y (z) )
Approximating y'(z) by linear interpolation, (9) can be described as

[y(wi) - y(aci—l)] _

i ) ~ (o) - AT - D) +pue) (10)

Similarly

) =y Sy By

Substituting equations (9} and (10) in (8) and rearranging, we get

Y(@ig1 —0) = y(Tig1) —

i) — y(es) = ple )1~ ylei) + yu(e)]



414 Awoke Andargie
~ p(@)[(1 ~ PW(zs) + u(zics)
heo 5 5
+ 5[*10 ($i+125[(1 - E)y(:'i+1) + Ey(xi)] 12)
- p'(z)[(1 - 7y(@) + 3 y(zi-1)]]

+ ﬁl1(5'3z'+1)?:l(f'3i+1) + gq(wi)y(wi) + g[r(xiﬂ) + r(z)]

2
Equation (12) can be rewritten in a three-term recurrence relationship as follows:
Eiyi1 — Fiyi + Giyisa = H;,i=0,1,2,, N (13)
Where
) é
Ei=<pi+5p; (14a)
é é h ) h
Fi=1+4—=piy1 — (1= )(p; + =pl) — =p! —q; 14b
+ 7 piv = (L= )i + 5pi) = 5P + 54 (14b)
) h é h
Gi=1-(1- ﬁ)pi“ + 5(1 - E)PQH — 5%+ (14c)
h
H;, = 5(7'1 + T'z‘+1) (14d)

and y; = y(z:), pi = (i), ¢; = ¢{z;) and r; = r(z;). Equation (13) gives a
system of N+ 1 equations with N + 3 unknowns’ yp to yn and the unwanted
unknowns’ y_; and yn+1. To eliminate the unknowns y_; and yn4+1, we make
use of the equations in (2) given as boundary conditions in mixed form. By
employing the second order central difference approximation in (2), we get

a1y(0) + ax(H; ) = (152)
and a3y(l) + (14(%) =4 (15b)
From (15) we have
2ha 2ho
Yy-1= “yo + Y1 — — (16a)
2 az

2h 2ha
and yn41 = —— +yn-1 — —UN. (16b)

a4 a4

Making use of (16a) in the first equation of the recurrence relation (13) at i =0
and (16b) in the last equation of the recurrence relation (13) at ¢ = N, respec-
tively, we get

2h0/1

az

2ha
Ey — FO)yO + (EO + GO)yl = Hy + EE() (17&)

(
2 oh
and (Ex +Gn)yn—1 — (a—“"‘GN + Fyn)yny = Hy — a—ﬂGN. (17b)
4 4
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Now, equations (13) and (17) give an N+1 by N+1 tri-diagonal system which
can be solved by using Thomas Algorithm. Repeat the numerical scheme for
different choice of §(deviating argument, satisfying the condition 0 < § << 1),
until the solution profile do not differ materially from iteration to iteration. For
computational point of view, we use an absolute error criterion, namely

™ Hz) —y™(z) <o for0<z <1 (18)

Where y™ is the solution for the mth iterate of § and o is the prescribed tolerance
bound.

3. Linear examples

To illustrate the present method we have chosen two linear singular per-
turbation problems with left-end boundary layer which are widely discussed in
literature. The analytical or approximate solutions of these problems are used
for comparison and are compared with the exact solutions.

Example 3.1. Consider the following singular perturbation problem from Dorr
et al([2], page 80).

ey’ (z) + ¢/ (z) — y(x) = 0; 2¢[0, 1]

with —y/(0) = 0 and y(1) + ey/(1) = L.
The exact solution is given by :

mzemlz —my M2z

ma(l 4 ¢ x my)em™ —my (14 & * my)em2

y(z) =

Where m; = %___ V}+45 and Mo = __1—2— VE}‘+4€

The numerical results are given in tables 1(a), 1(b) for ¢ = 107%and ¢ = 10~*
respectively.

Example 3.2. Consider the following singular perturbation problem from Dorr
et al([2],page80).

ey’(z) + y'(z) = —1 — 22; ze[0, 1]

with —¢/(0) =1 and y(1) + /(1) = 0.
The exact solution is given by :

y(z) =2~ (1 +2) + e[l = 2ell - exp(— )] )]

The numerical results are given in tables 2(a), 2(b) for ¢ = 10~3and ¢ = 1074
respectively.
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4. Non-linear examples

We have applied the present method on non-linear singularly perturbed prob-
lem with left end boundary layer by using the method of quasilinearization.

Example 4.1. Consider the following semi-linear boundary value problem from
Dorr et al[[2], page 80].

ey’ (z) + 9/ (z) — ¥*(z) = 0; z¢[0, 1]

with —3/'(0) =0 and y(1) +ey'(1) = 0.
The linear problem concerned is:
1 1 -3 —-v1+4e
1 !
- _— = - h = ——
y'(@)+ et () + e(z + C))y(x) e(x +¢)?’ where ¢ 2
The asymptotic expansion solution is given by:
1 € -
y(z) = -t Zexp(?) +0(e)

The numerical results are given in tables 3(a), 3(b) for ¢ = 1073and ¢ = 1074
respectively.
5. Right Boundary layer

Finally, we considered the following singular perturbation problem with mixed
boundary conditions:

ey’(z) + a(z)y (z) + bz)y(z) = f(z); 2¢[0, 1] (19)

with
a19(0) + a2y’ (0) = o, (20a)
and, asy(1) +awy/ (1) = (20b)

where ¢ is a small positive parameter(0 < ¢ << 1) and a;,i = 1,..,4, ¢, 8 are
known constants. We assume that a(z),b(z) and f(z) are sufficiently contin-
uously differentiable functions in [0,1]. Further more, we assume that a(z) <
M < Othroughout the interval [0,1], where M is some positive constant. This
assumptions merely implies that the boundary layer will be in the neighborhood
of x = 1.

The evaluation of the right-end boundary layer problem (19)-(20) is similar to
that of the left-end boundary layer but there are some differences worth noting.
Let ¢ be a small deviating argument (0 < § << 1). By using Taylor series
expansion of order 2 in the neighborhood of the point x, we get

y(@+0) =y (z)+ 8y () (21)
Substituting equation (21) in to equation (19), we get
ey (z + 0) — ey (z) + da(z)y' (z) + db(z)y(x) = §f(x) (22)
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Now we rewrite equation (22) in the form

Y (x) = p(x)y (z + &) + g(@)y(z) + r(z), for 0 <z < (1-4) (23)
Where
p(z) = ;;a—(x) (24a)
_ oblx)
q(z) = T alz) (24b)
and,r(z) = —__%% (24c)

Equation (23) is a first order differential equation replacing the second order
differential equation (19) with a small deviating argument. Transition from (19)
to (23) is admitted, because of the condition that ¢ is small{0 < § << 1).
This replacement is significant from the computational point of view. Further
theoretical discussion and details on the validity of this transition can be referred
in Elsgolts and Norkin[4].

Now we divide the interval [0,1] in to N equal subintervals of mesh size
h = 1/N so that x; = ih, i = 0,1,2,...,N. Integrating equation (23) in the
subintervallz;.1, @), 1 = 0,1,2,..., N, we get

y(x:i) — y(wi-1) = p(@a)y(z; + 6) — p(zi_y)y(zio1 + 6)

[ pta e+ 0) + @t + (@) do

Ti—

(25)

Using the Trapezoidal formula for evaluating the integral approximately, we get
y(x:) —y(wiz1) = piy(xi + 6) — pi—1y(zi-1 +9)

bl e + ) = 9 (E )y +5) (26)

+ Sy + otz yta )]+ () +r(z)

Again, we make use of the Taylor series expansion of order 1 on y(z + 4) and we
get

ylz +6) = y(z) + 6y (x) (27)
Approximating y'(z) by linear interpolation, (27) can be described as
T; — WX; 1) 1
o+ 0) ) + STV — (- By 4 Sytmn)  (29)
Similarly
y(x;) — ylTiz 4 é
i +0) (o) + LTI - - Dy )+ ) (29)

Substituting equations (28) and (29) in (26) and rearranging, we get

) = ylzis) = plll = Py + ru(eis)
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~ pialll - Py + Fyle)]
he 5 5
+ 5[—11 (z:)[(1 ;E)y(ﬂ%) + Eéy(xi+l)] (30)
=P (@)1 - HIY(@i-1) + 7 y(zi)]

+ Sla(@)u(@:) + alei)y(zi)] + Slrizis) + (@)

Equation (30) can be rewritten in a three-term recurrence relationship as
follows:

Eyi1—-Fy+Gyyr=H;, 1=0,1,2,...,N (31)
Where
) h h

Ei=-1+(1- E)(pi—l + 510;—1) - 5(11“1 (32a)

) ) h é h
Fi=-1-_—p; - )i — =pi) — 7P = 2b
1= opiei + (1= $)pi — 5pi) — 5Pia + 54 (32b)

58,

G;= —f_Lpi + P (32¢)
Hi = g('l‘z +1"7;_1) (32d)

and y; = y(x;), pi = p(:), ¢ = q(z;) and r; = r(z;). Equation (31) gives a
system of N + 1 equations with N + 3 unknowns’ y, to yn and the unwanted
unknowns’ y_; and yn+1. To eliminate the unknowns y_; and yx41, we make
use of the equations in (20) given as boundary conditions in mixed form. By
employing the second order central difference approximation in (20), we get

ay(0) + ax(P ) = (33a)
and  azy(l) + ad%%l )= 8. (33b)
From (33) we have
2ha 2ho
Yy-1= 1yo +y - — (34a)
2 az

2h 2ha
and  Yn+1 = = +yn—1 — —yn. (34b)

aq a4

Making use of (34a) in the first equation of the recurrence relation (31) at ¢ =
0, and (34b) in the last equation of the recurrence relation (31) at ¢ = N,
respectively, we get

2ha 2ho
( a,zl Ey — Fo)yo + (Eo + Go)y1 = Hy + _EQ‘—EO (35&)
2ha 2h
and (EN+GN)yN_1—( p SGN‘FFN)Z/N:HN"a_fGN- (35b)
4



Now, equations (31) and (35) give an N + 1 by N + 1 tri-diagonal system which
can be solved by the efficient algorithm know by ” Thomas Algorithm”. Repeat
the numerical scheme for different choice of §(deviating argument, satisfying the
condition 0 < 4 < 1), until the solution profile do not differ materially from

iteration to iteration. For computational point of view, we use an absolute error
criterion, namely

Where 4™ is the solution for the mth iterate of § and o is the prescribed tolerance

bound.
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" (@)

-y} <o for0<z<1

(36)

la Error Table of

Example 3.1,e =10—-3, h =10~ 2

1b Error Table of

Example 3.1,e =10—-4, h =102

T 6=0.001 | 6=0.005 |é=0.01 x ¢ =0.0001 | 6 =0.0005 | 6 =0.001
0.00 | 2.97E-04 2.98E-04 2.96E-04 0.00 | 3.11E-05 3.29E-05 3.39E-05
0.01 | 5.44E-05 5.53E-05 5.39E-05 0.01 | 3.90E-06 2.10E-06 1.10E-06
0.02 | 6.00E-07 3.00E-07 1.10E-06 0.02 | 4.70E-06 2.80E-06 1.90E-06
0.03 | 5.70E-06 4.70E-06 6.10E-06 0.03 | 4.70E-06 2.80E-06 1.80E-06
0.04 | 6.10E-06 5.20E-06 6.60E-06 0.04 | 4.60E-06 2.70E-06 1.80E-06
0.05 | 6.20E-06 5.30E-06 6.70E-06 0.05 | 4.70E-06 2.80E-06 1.80E-06
0.06 | 6.20E-06 5.20E-06 6.70E-06 0.06 | 4.70E-06 2.80E-06 1.80E-06
0.07 | 6.10E-06 5.10E-06 6.60E-06 0.07 | 4.60E-06 2.70E-06 1.80E-06
0.08 | 6.10E-06 5.10E-06 6.60E-06 0.08 | 4.70E-06 2.80E-06 1.90E-06
0.09 | 6.20E-06 5.20E-06 6.60E-06 0.09 | 4.70E-06 2.80E-06 1.80E-06
0.10 | 6.10E-06 5.20E-06 6.60E-06 0.10 | 4.60E-06 2.80E-06 1.80E-06
0.20 | 6.10E-06 5.10E-06 6.60E-06 0.20 | 4.60E-06 2.70E-06 1.80E-06
0.30 | 5.90E-06 4.90E-06 6.30E-06 0.30 | 4.40E-06 2.50E-06 1.70E-06
0.40 | 5.60E-06 4.60E-06 5.90E-06 0.40 | 4.00E-06 2.20E-06 1.50E-06
0.50 | 4.90E-06 4.00E-06 5.20E-06 0.50 | 3.60E-06 2.00E-06 1.40E-06
0.60 | 4.30E-06 3.60E-06 4.50E-06 0.60 | 3.10E-06 1.60E-06 1.10E-06
0.80 | 2.40E-06 1.90E-06 2.60E-06 0.80 | 1.70E-06 5.00E-07 4.00E-07
1.00 | 5.00E-07 6.00E-07 6.00E-07 1.00 | 7.00E-07 8.00E-07 7.00E-07

Again we demonstrated the applicability of the present method by considering
two singular perturbation problems with right-end boundary layer.

Example 6.1. Consider the following non-homogenous singular perturbation

problem

6. Right boundary layer problems

—ey’(z) + y'(z) = 3 — 2z; 2¢[0, 1]
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with y(0) — e/ (0) = 1 and 3/(1) = 1. The exact solution is given by:

y(l') = ZL'(3 e 26) + 8[3 — 28[1 - exp(— (x ; 1) )]]

The numerical results are given in tables 4(a), 4(b) for ¢ = 102 and ¢ = 10~*
respectively.

Example 6.2. Consider the following singular perturbation problem from Dorr
et al([2], pp.80 witha =1, n = 1).

ey’(z) — ' (z) — y(z) = 0;2¢[0, 1]
with y(0) — ey/(0) = 1 and 3/ (1) = 0. The exact solution is given by:

mae™T — mge(ml (z—=1)+ma)

yle) = mi(l — emz) — ma(1 — emy elma—m)

Where m; = H—\/gﬁ and my = 1——;15)
The numerical results are given in tables 5(a), 5(b) for e = 1073 and ¢ = 10~
respectively.

7. Discussion and conclusions

A numerical method for singular perturbation problems in arising in chemical
reactor theory for general singularly perturbed two point boundary value prob-
lems with boundary layer at one end( left or right) of the underlying interval is
presented. In this method, the original second order differential equation is re-
placed by an approximate first order differential equation with a small deviating
argument. By using the trapezoidal formula we obtain a three term recurrence
relation, which is solved using Thomas Algorithm. To demonstrate the appli-
cability of the method, we have solved four linear (two left and two right end
boundary layer) and one nonlinear problems.

Absolute error tables are presented. From the results, it is observed that the
present method approximates the exact or the asymptotic expansion solution
very well. Hence we can conclude that the present method appears to be one of
the efficient methods for solving singular perturbation problems.
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2a Error Table of 2b Error Table of
Example 3.2,¢e =10—-3, h =10-2 Example 3.2, e =10—4, h =102
T 6=10.001 | 4=0.005 | 6§=0.01 x § = 0.0001 | § =0.0005 | 6 =0.001
0.00 | 1.10E-06 1.10E-06 1.10E-06 0.00 | 9.00E-07 9.00E-07 9.00E-07
0.01 | 0.00E400 | 0.00E400 | 0.00E400 | 0.01 | 9.00E-07 9.00E-07 9.00E-07
0.02 | 9.00E-07 9.00E-07 9.00E-07 0.02 | 9.00E-07 9.00E-07 9.00E-07
0.03 | 1.00E-06 1.00E-06 1.00E-06 0.03 | 1.00E-06 1.00E-06 1.00E-06
0.04 | 1.00E-06 1.00E-06 1.00E-06 0.04 | 1.00E-06 1.00E-06 1.00E-06
0.05 | 1.00E-06 1.00E-06 1.00E-06 0.05 | 1.00E-06 1.00E-06 1.00E-06
0.06 | 1.00E-06 1.00E-06 1.00E-06 0.06 | 1.00E-06 1.00E-06 1.00E-06
0.07 | 9.00E-07 9.00E-07 9.00E-07 0.07 | 9.00E-07 9.00E-07 9.00E-07
0.08 | 1.00E-06 1.00E-06 1.00E-06 0.08 | 1.00E-06 1.00E-06 1.00E-06
0.09 | 1.10E-06 1.10E-06 1.10E-06 0.09 | 1.10E-06 1.10E-06 1.10E-06
0.10 | 1.00E-06 1.00E-06 1.00E-06 0.10 | 9.00E-07 9.00E-07 9.00E-07
0.20 | 1.00E-06 1.00E-06 1.00E-06 0.20 | 9.00E-07 9.00E-07 9.00E-07
0.30 | 1.00E-06 0.00E+00 | 1.00E-06 0.30 | 1.00E-06 0.00E+00 | 0.00E+400
0.40 | 1.20E-06 1.20E-06 1.20E-06 0.40 | 1.20E-06 1.20E-06 1.20E-06
0.50 | 1.30E-06 3.00E-07 1.30E-06 0.50 | 1.40E-06 4.00E-07 4.00E-07
0.60 | 1.50E-06 5.00E-07 1.50E-06 0.60 | 1.50E-06 5.00E-07 5.00E-07
0.80 | 1.50E-06 1.40E-06 1.50E-06 0.80 | 1.50E-06 1.50E-06 1.40E-06
1.00 | 2.00E-06 2.00E-06 2.00E-06 1.00 | 1.90E-06 1.90E-06 1.90E-06
3a Error Table of 3b Error Table of
Example 4.1,e =10-3, h =102 Example 4.1,e =10—-4, h=10-2
T 0=0.001 |§=0.005 | 6§=0.01 x § =0.0001 | 6 =0.0005 | 6 =0.001
0.00 | 5.05E-04 5.05E-04 5.05E-04 0.00 | 5.72E-05 5.74E-05 5.74E-05
0.01 | 2.58E-04 2.58E-04 2.58E-04 0.01 | 3.25E-05 3.27E-05 3.27E-05
0.02 | 2.61E-04 2.61E-04 2.61E-04 | 0.02 | 3.28E-05 3.30E-05 3.30E-05
0.03 | 2.63E-04 2.63E-04 2.64E-04 0.03 | 3.31E-05 3.33E-05 3.33E-05
0.04 | 2.66E-04 2.66E-04 2.66E-04 0.04 | 3.34E-05 3.36E-05 3.36E-05
0.05 | 2.69E-04 2.69E-04 2.69E-04 0.05 | 3.36E-05 3.38E-05 3.39E-05
0.06 | 2.72E-04 2.71E-04 2.72E-04 0.06 | 3.39E-05 3.41E-05 3.42E-05
0.07 | 2.74E-04 2.74E-04 2.74E-04 0.07 | 3.42E-05 3.44E-05 3.45E-05
0.08 | 2.77E-04 2.77E-04 2.77E-04 0.08 | 3.44E-05 3.47E-05 3.48E-05
0.09 | 2.80E-04 2.80E-04 2.80E-04 0.09 | 3.48E-05 3.50E-05 3.51E-05
0.10 | 2.83E-04 2.83E-04 2.83E-04 0.10 | 3.51E-05 3.54E-05 3.55E-05
0.20 | 3.15E-04 3.15E-04 3.15E-04 0.20 | 3.86E-05 3.87E-05 3.89E-05
0.30 | 3.52E-04 3.52E-04 3.52E-04 0.30 | 4.25E-05 4.27E-05 4.27E-05
0.40 | 3.97E-04 3.97E-04 3.97E-04 0.40 | 4.70E-05 4.70E-05 4.72E-05
0.50 | 4.51E-04 4.51E-04 4.51E-04 0.50 | 5.24E-05 5.25E-05 5.26E-05
0.60 | 5.16E-04 5.16E-04 5.16E-04 0.60 | 5.87E-05 5.91E-05 5.89E-05
0.80 | 6.99E-04 6.98E-04 6.98E-04 0.80 | 7.52E-05 7.54E-05 7.53E-05
1.00 | 9.97E-04 9.97E-04 9.97E-04 1.00 | 9.93E-05 9.93E-05 9.93E-05
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4a BError Table of

Example 6.1,e =10—3, h =102

4b Error Table of

Example 6.1,e =10—-4, h =102

T 6=0.001 [ §=0.005 | §=0.01 T 6 =10.0001 | § =0.0005 | § = 0.001
0.00 | 9.97E-04 7.27E-04 6.66E-04 0.00 | 1.11E-04 8.57E-05 7.99E-05
0.10 | 9.06E-04 6.36E-04 5.75E-04 0.10 | 1.20E-05 1.33E-05 1.91E-05
0.20 | 9.06E-04 6.36E-04 5.75E-04 0.20 | 1.20E-05 1.33E-05 1.91E-05
0.30 | 9.06E-04 6.35E-04 5.75E-04 0.30 | 1.19E-05 1.34E-05 1.92E-05
0.40 | 9.06E-04 6.35E-04 5.75E-04 0.40 | 1.20E-05 1.30E-05 1.90E-05
0.50 | 9.06E-04 6.35E-04 5.75E-04 0.50 | 1.20E-05 1.40E-05 1.90E-05
0.60 | 9.05E-04 6.34E-04 5.74E-04 0.60 | 1.10E-05 1.50E-05 2.00E-05
0.70 | 9.05E-04 6.34E-04 5.74E-04 0.70 | 1.10E-05 1.50E-05 2.00E-05
0.80 | 9.05E-04 6.34E-04 5.74E-04 0.80 | 1.10E-05 1.50E-05 2.00E-05
0.90 | 9.04E-04 6.34E-04 5.74E-04 0.90 | 1.10E-05 1.50E-05 2.00E-05
0.92 | 9.04E-04 6.34E-04 5.74E-04 0.92 | 1.10E-05 1.50E-05 2.00E-05
0.94 | 9.04E-04 6.34E-04 5.74E-04 0.94 | 1.10E-05 1.50E-05 2.00E-05
0.95 | 9.04E-04 6.34E-04 5.74E-04 0.95 | 1.10E-05 1.50E-05 2.10E-05
0.96 | 9.04E-04 6.34E-04 5.74E-04 0.96 | 1.10E-05 1.50E-05 2.10E-05
0.97 | 9.04E-04 6.34E-04 5.74E-04 0.97 | 1.10E-05 1.50E-05 2.10E-05
0.98 | 9.04E-04 6.34E-04 5.74E-04 0.98 | 1.10E-05 1.50E-05 2.10E-05
0.99 | 9.04E-04 6.34E-04 5.73E-04 0.99 | 1.10E-05 1.50E-05 2.10E-05
1.00. | 9.03E-04 6.32E-04 5.72E-04 1.00 | 1.10E-05 1.50E-05 2.10E-05

5a Error Table of

Example 6.2,e =10—-3, h=10—-2

5b Error Table of

Example 6.2, e =10—-4, Ah=10—-2

T 0=20.001 | 6=0.005 | 6=0.01 z 4 =0.0001 | § =0.0005 | § =0.001
0.00 { 0.00E400 | 0.00E400 | 0.00E+00 | 0.00 | 0.00E+00 | 1.00E-07 0.00E+00
0.10 | 1.40E-06 1.40E-06 1.40E-06 0.10 | 9.00E-07 4.00E-07 5.00E-07
0.20 | 2.60E-06 2.50E-06 2.70E-06 0.20 | 1.90E-06 1.20E-06 1.00E-06
0.30 | 3.70E-06 3.30E-06 3.80E-06 0.30 | 2.70E-06 1.70E-06 1.30E-06
0.40 | 4.60E-06 3.90E-06 4.70E-06 0.40 | 3.30E-06 2.10E-06 1.60E-06
0.50 | 5.20E-06 4.40E-06 5.40E-06 0.50 | 3.80E-06 2.40E-06 1.80E-06
0.60 | 5.50E-06 4.80E-06 5.70E-06 0.60 | 4.10E-06 2.70E-06 2.10E-06
0.70 | 5.90E-06 5.20E-06 6.20E-06 0.70 | 4.40E-06 2.80E-06 2.10E-06
0.80 | 6.10E-06 5.40E-06 6.40E-06 0.80 | 4.50E-06 3.00E-06 2.20E-06
0.90 | 6.20E-06 5.50E-06 6.50E-06 0.90 | 3.21E-05 3.37E-05 3.45E-05
0.92 .| 6.20E-06 5.40E-06 6.50E-06 0.92 | 2.42E-05 2.58E-05 2.66E-05
0.94 | 6.30E-06 5.50E-06 6.60E-06 0.94 | 1.65E-05 1.81E-05 1.89E-05
0.95 | 6.30E-06 5.50E-06 6.60E-06 0.95 | 1.28E-05 1.44E-05 1.52E-05
0.96 | 6.20E-06 5.40E-06 6.50E-06 0.96 | 9.30E-06 1.09E-05 1.17E-05
0.97 | 5.80E-06 5.00E-06 6.10E-06 0.97 | 5.80E-06 | 7.40E-06 8.10E-06
0.98 | 9.00E-07 1.00E-07 1.20E-06 0.98 | 2.20E-06 3.80E-06 4.60E-06
0.99 | 5.42E-05 5.50E-05 5.39E-05 0.99 | 5.00E-07 1.10E-06 1.90E-06
1.00 | 2.9TE-04 2.98E-04 2.97E-04 1.00 | 2.99E-04 2.97E-04 2.96E-04
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