Journal of the Korean Statistical Society (2001), 30: 2, pp 179-192

Statistical Inference in Non-Identifiable and Singular
Statistical Models |

Shun-ichi Amari!, Hyeyoung Park!, and Tomoko Ozeki'

ABSTRACT

When a statistical model has a hierarchical structure such as multilayer
perceptrons in neural networks or Gaussian mixture density representation,
the model includes distributions with unidentifiable parameters when the
structure becomes redundant. Since the exact structure is unknown, we
need to carry out statistical estimation or learning of parameters in such
a model. From the geometrical point of view, distributions specified by
unidentifiable parameters become a singular point in the parameter space.
The problem has been remarked in many statistical models, and strange
behaviors of the likelihood ratio statistics, when the null hypothesis is at a
singular point, have been analyzed so far.

The present paper studies asymptotic behaviors of the maximum likeli-
hood estimator and the Bayesian predictive estimator, by using a simple cone
model, and show that they are completely different from regular statistical
models where the Cramér-Rao paradigm holds. At singularities, the Fisher
information metric degenerates, implying that the Cramér-Rao paradigm
does no more hold, and that the classical model selection theory such as
AIC and MDL cannot be applied. This paper is a first step to establish a
new theory for analyzing the accuracy of estimation or learning at around
singularities.

Keywords: Singular structure; Hierarchical system; Maximum Likelihood Esti-
mator; Bayesian Predictive Distribution

1. INTRODUCTION

Tt has been known that some statistical models such as Gaussian mixtures and
changing point estimation include unidentifiable parameters in its part. Hierar-
chical systems such as neural networks also include complex singular structures in
the parameter spaces. A lower-order system is included in the space of a higher-
order system as a subset and when a true parameter is on such a subspace, the
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true parameter is unidentifiable. Here, the Fisher information matrix degen-
erates, and the conventional paradigm of the Cramér-Rao bound does not hold.
However, we need to estimate the parameters of such a system by learning, which
is a type of sequential estimation, in many engineering problems using artificial
neural networks (Amari, 1998; Amari, Park, and Fukumizu, 2000; Park, Amari,
and Fukumizu, 2000). Therefore, it is important to establish a different paradigm
for analyzing various characteristics of learning or estimation in singular models
including points$ of unidentifiable parameters.

There have been a number of studies on this problem of singularity or uniden-
tifiability. In many statistical literatures, strange behaviors of the log likelihood
ratio have been studied, when the null hypothesis is at an unidentifiable or sin-
gular point. Hagiwara et al. (2000) investigated abnormal phenomena at the
singularities by using neural networks models and pointed out that the AIC type
criterion of model selection is no more valid. Fukumizu (2000; 2001) analyzed
the behaviors of the maximum likelihood estimator in unidentifiable situations by
applying the ideas of Hartigan (1985) and Dacunha-Castelle and Gassiat (1997).
Watanabe (2001a; 2001b) also analyzed the behaviors of the Bayesian predictive
distribution in the algebraic-geometrical framework. Amari and Ozeki (2001)
showed the influence of the singularities on the behavior of learning (Amari,
Park, and Fukumizu, 2000; Park, Amari, and Fukumizu, 2000) by using a simple
toy model. However, these studies have been conducted separately, from differ-
ent viewpoints. We need a more integrative framework to investigate the whole
characteristics of this type of statistical inference under models including singu-
larities. This is also an important subject of research in information geometry
(Amari and Nagaoka, 2000).

The generalization error is a basic factor for investigating the characteristics
of a stochastic model. It represents how well an estimated system behaves. It
is given by the Kullback-Leibler divergence of the estimated distribution from
the unknown true distribution. Model selection as well as parameter estimation
intends to minimize the generalization error. However, the generalization error
cannot be directly evaluated, and we use the training error, which is the empirical
loss and computable. To this end, we need to evaluate the bias of the training
error, which leads us to the AIC criterion for model selection. Indeed, for regular
statistical models, the gap between the generalization error and the training error
is given by a term, depending only on the number of the parameters divided by
the number of examples. This fact has been shown by Amari and Murata (1993)
to hold in general neural network models and by many others. This result is the
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base of the well known criterion, AIC, for model selection. However, when one
compares two hierarchical models, the lower-order model includes unidentifiable
parameters in the space of the higher-order model. Therefore, the conventional
results mentioned above cannot be applied, and we need a new result estimating
the gap between the generalization error and the training error at singularities.

The present paper analyzes the generalization error and training error in the
framework of the Gaussian random field, used by Dacunha-Castelle and Gassiat
(1997), Fukumizu (2000), and Hartigan (1985). We use a simple cone model to
investigate the relationship between the generalization error and the training error
for the maximum likelihood estimator and the Bayesian predictive distribution.
The present results show how the asymptotic behaviors of estimators differ from
the regular case, elucidating the strange behaviors of singular models in non-
Cramér-Rao paradigm.

In the next section, we summarize known asymptotic results for parameter es-
timation. We then define the problem including singularities (unidentifiabilities)
in the parameter space of probability density functions, and give some typical
examples of statistical models with singularities.' In section 4, we describe our
method to analyze the generalization error and the training error of MLE, and
give some results for a simple toy model. In section 5, we describe the method
of analysis for the Bayesian predictive distributions, and give interesting new
results. The conclusions and discussions for future works are given in section 6.

2. ASYMPTOTICS OF STATISTICAL ESTIMATION

Let us begin with a statistical model S = {p(x|0)|6@ € O}, which is defined by
a probability density function of a random variable z. The probability density
function is specified by the parameter 8 in the parameter space ©. We assume
that the true probability density po(z) = p(«|0,) is in the model S. When
a sample of observations D = {x1,...x,} generated by the true probability
density p,(z) is given, we try to find an estimated distribution p(x), which is
a plug-in distribution p(x|@) of estimator @ or the Bayes predictive estimator,
through minimizing the distance between p(x) and p,(x). The distance between
two probability density functions is measured by the Kullback-Leibler divergence
of the form,

Kipo 5] = By, [los222). 2.1)
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The expectation of the negative logp(z), Ep,[— log p(x)], is sometimes called the
generalization error, and is given by

Egen = H,+ Ep [K[po : ﬁ]] ’ (2'2)

where H, is the entropy of p,(x) and Ep denotes expectation with respect to
observed data. Similarly, the training error is defined by using the empirical
expectation,

Etrain = Ho + ED

-71; Z log pg_((;vz))} . (2.3)
i=1 '

These are terminologies from neural networks community. In order to evaluate
the estimator p, one uses Ey.,, or Ep [K[p, : ], but it is not computable. Instead,
one uses the arithmetic mean of log[p,(x;)/p(x;)] of the data whose expectation
gives Fypqin —H,, which is computable. Hence, it is important to see the difference
between Fgen and Eirqin. This is the principle of AIC in model selection.

When the statistical model S is regular, or the true distribution p,(x) is iden-
tifiable, the mle-based p(x, 9) and the Bayes predictive distribution are known
to be Fisher efficient under reasonable regularity conditions,

d

Ep|Klp, : pl] = — .
D [Klpo: pll = 5 -, (2.4)
where d is the dimension number of parameters 6. It is also proved that
Egen = Eyrgin + d 2.5
gen ~ Lirain mn, ( ‘ )

asymptotically. AIC is a criterion to estimate E,e, from the above relation for
model selection.

~ We will show most of these good relations do not hold when p,(x) is uniden-
tifiable.

3. MODELS WITH SINGULARITIES

In a statistical model S = {p(x|@)|0}, when p(z|6;) = p(x|h2) holds for
01 # 05, the two points 8; and 0, are said to be equivalent. When the set of
equivalent points forms a submanifold in the parameter space, the Fisher infor-
mation matrix degenerates on it, and the parameters are unidentifiable when the
true one is on the submanifold. Dividing the parameter space by the equivalent
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relation, all equivalent points reduce to one class. This causes singularities in
the reduced space such that dimensions are reduced in such unidentifiable sets.
These singularities are very ubiquitous in the space of hierarchical statistical
models such as neural networks and Gaussian mixture models.

In the present paper, we discuss singularities with a cone structure. Let us
first divide the parameter 8 into two parts; £ and w, 8 = (£, w), and assume that
the probability density for the statistical model is represented by

p(z|8) = p(z|¢(w)). (3.1)

For this type of models, the parameter w is unidentifiable when £ = 0. This cone
structure of singularity occurs in various statistical models including uniden-
tifiable parameters (Dacunha-Castelle and Gassiat, 1997). In this section, we
introduce some examples of statistical models that have such a singularity.

3.1. Cone Model

We first consider the set of Gaussian distributions of random variable z E
R%? | with mean u and identity covariance matrix I,

1 1 9
TIH) = —F———expy —=|z — 3.2
pleli) = —=msexp { ~jle -’} 32
This is the enveloping model S. The cone model M is a subset of S, embedded

M:p = \/% ( ci: ) = ¢a(w) (3.3)

w € 5% Jla*=1, (3.4)

as

where ¢ is a constant and S¢ is a d-dimensional unit sphere. When d = 1, S is
a circle so that w is replaced by angle 8, and we have

¢ 1
p = —==| ccosb |. (3.5)
1+c csin @

See Figure 3.1. The M is a cone, having (£,w) as coordinates, where the apex
¢ = 0 is a singular point with the cone structure. From the next section, we will
mainly discuss this model for analyzing the generalization error and the training
error. ‘
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Figure 3.1: One-dimensional Cone Model

3.2. Neural Networks

A multilayer perceptron, which receives an input vector signal @ and emit a
scalar output signal y, can also be considered as a stochastic model. Let & be
the number of hidden units, and let w; be the weight vector of the ith hidden
unit, 2 = 1,--- , h. Let ¢ be the sigmoidal activation function such as hyperbolic
tangent, and let v; be the weight from the ith hidden unit to the output unit. We
assume that the output unit is linear, but is disturbed by Gaussian noise n with
mean 0 and variance o2, The input-output relation of a multilayer perceptron is
then represented as

y=f(z,0)+n (3.6)
where
R
f(@,0) =) vip(w;-z), (3.7)
=1
and 6 = (wy, - ,wp,v1, -+ ,v,) denote modifiable parameters. Because of the

noise n, the behavior of a system is described by the conditional probability
density function of output y conditioned on input =z,

1 1
plole.0) = = ewp { gz (v - @.0))* | (3.)

Let us denote by M (h) the set of all the perceptrons with A hidden neurons, and
identify each point of the space M (h) with the associated (conditional) probability
distribution. In other words, M(h) is regarded as a statistical model consisting
of such probability distributions parameterized by 6.
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The model M (h) has a hierarchical structure, since it includes M (h—1), M (h—
2}, ... as subspaces. For example, when

viw; = 0 (39)

holds, the ith hidden neuron does not play any role so that it can be removed.
Hence, the subspace defined by (3.9) corresponds to M (h — 1). When w; = w;,
the ith and jth neurons play the same role so that they can be merged into one
neuron. Hence, the subspace given by w; = wyj is also identified with M (h — 1).
The parameters of these subspaces make singularities in the space of M (h). For'
the simplest case, let us consider the model M (1) of only one hidden neuron,
which has the function mapping of the form,

f(z,8) =ve(w-z). (3.10)

Then we can find the singularity of cone structure at v = 0.

3.3. Gaussian Mixtures

The Gaussian mixture is a weighted sum of Gaussian probability density
functions,

h
p(x,0) = pr (z— ), ZUL =1, (3.11)
i=1

where 1) is the Gaussian density function,

() = cexp {—%W}. (3.12)

The set of the Gaussian mixtures with A components forms a space M (h), which
includes M (h — 1) as a subspace. Hence, the Gaussian mixtures is also a kind
of hierarchical model with complex singularities. In addition, we can find that it
has the cone structure of singularity when v; = 0 or p, = k.

4. GENERALIZATION ERROR AND TRAINING ERROR OF
MAXIMUM LIKELIHOOD ESTIMATOR

For the sake of simplicity, we use the simple cone model in order to ana-
lyze the generalization error and the training error of the mle. However, our
method is applicable to other models such as neural networks. For a given set of
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observations, D = {&;};=1,. n, the log likelihood of D is written as
1 — )
L(D,¢, w) = —3 Dz — La(w)”. (4.1)
i=1

The maximum likelihood estimator is the one that maximizes L(D, ¢, w). How-
ever, OL/0w = 0 at £ = 0, so that we cannot analyze the behaviors of the mle
by the Taylor expansion of the log likelihood in this case. Following Hartigan
(1985) (see also Fukumizu (2000) and Hagiwara et al. (2000) for details), we first
fix w and search for the ¢ that maximizes L. This is easy since L is a quadratic
function of £&. The maximum ¢ is given by

{(w) = argmax.L(D,¢& w) (4.2)
1

= —aw) &= ——Y(w), (4.3)

where
1 n
T=—> (4.4)
\/ﬁ i=1

By the central limit theorem, Y (w) = ﬁ Yo a(w) - z; is a Gaussian random
variable depending on w whose mean is 0 and whose variance is a(w) - a(w) = 1.
By substituting {(w) in (4.1), the log likelihood function becomes

Lw) = L(f(w),w) (4.5)
_ —%;m?—ké—(a(w) 5)’ (4.6)

Therefore, the mle b is given by the maximizer of L(w),

@ = argmax,,[(w) (4.7

= argmax,Y?(w).

Using the mle, we can obtain the core part of the generalization error of the
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form,
Byen = EpBg |log L&) 4.9
gen — DL ogp(:c|é,cb) ( : )
= EpBg [—f(ﬁﬁ)a(d’)-wwL%{?z(cﬁ) (a(@) - a{@)) (4.10)
= Ep Bé?(a)] (4.11)
= %ED [maxwY?(w)] . (4.12)
Similarly, the training error is obtained by
Etrain = E — po l'z 413
i N ; :1:1|§, )} ( )
(1 & 2N 1y, . .
— B |1 Y {~w@)ae) o+ 580) (a(w)-a(w))}] (4.14)
L =1
~ B |-4(0) (zae) - 8) + 3€@) (4.15)
= Ep —%?(w)] S (4.16)
= —%ED [maxwY?(w)] . (4.17)

Here, we neglected the common H, for Egen, and Ejpqin. One can see the symmet-
ric duality between the generalization error and the training error (Amari and
Murata, 1993).

It is in general difficult to calculate the maximum of the Gaussian field Y (w).
In the simple cone model, we can obtain the explicit value of Ep [maxwY2 (w)]
We show the results.

Theorem 1. The generalization and training errors of mle for cone model
is given by

Byen = m {1 + 2cE[|fl|]E[|aZ'|] +c2E[|:E/|2] } (4.18)

1 ! e
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-
1 NE )
o 9 2 d+1) % (420
Birain 2n((1+02){1+ c(d—l)!!\/; teldd )} (4:20)

where & = (ZL‘Nl,CNUI) = (521, N ,.’f)d+2).

Corollary 1. When d is large, the mle satisfies

2
c°d
B _ 4.21
gen 277,(1 T 62) ; ( )
2d
Eiruin —— 4.22
K 2n(1 + ¢?) (4.22)

It should be remarked that the generalization and training errors depend on
the shape parameter c as well as the dimension number. In the regular case, they
depend only on d. As one can easily see, when c¢ is small, the cone looks like a
needle, and its behavior resembles a one-dimensional model. When ¢ is large, it
resembles two statistical (d + 1)-dimensional hypersurfaces, so that its behavior
is like a d-dimensional regular model.

5. GENERALIZATION ERROR AND TRAINING ERROR OF
BAYESIAN PREDICTIVE DISTRIBUTION

While the maximum likelihood estimator searches for an asymptotically opti-
mal point estimator in the model, the Bayes paradigm studies a posterior prob-
ability of the parameters based on the set of observations D. The posterior
probability density is written as,

p(gawlD) = C(D)ﬂ'(faw)]:[p(mil{aw)
= ¢(D)n(¢,w)exp {L(D, & w)}, (5.1)

where ¢(D) is the normalization factor depending only on data D, 7(¢,w) is a
prior distribution on the parameter space, and {L(D, &, w)} is the log likelihood
of D. The Bayesian predictive distribution p(z|D) is obtained by averaging
p(z|¢, w) with respect to the posterior distribution p(¢,w|D), and can be written
as

p(w|D) = / p(@|é, w)p(€, w|D)dedw. (5.2)

To get an explicit form of the predictive distribution, we need to assume a
prior distribution of parameters. One assumes a Gaussian distribution, a uniform
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distribution, or the Jeffreys noninformative distribution, some of which might be
improper. As long as the prior is a smooth function, the first order asymptotic
properties are the same for mle and Bayes estimators in the regular case. How-
ever, at singularities, the situation can be different. Here, we assume a uniform
prior for w that is the regular part of the parameter. For ¢ that makes singular-
ity, we assume two different priors, the uniform prior and the Jeffreys prior, and
analyzed the two cases, respectively. Using the cone model of section 3.1, we can
obtain explicit results for the generalization error and the training error.

Theorem 2. Under the assumption of the uniform prior for £, the gener-
alization error and the training error of the predictive distribution is given by

= o5 [ 25
= B [IQY @), (5.4)

where
Qi@ = VS{(&), (5.5)

When d is large,

A

Ejen = 2n{1+6—d—} (5.7)
1 ¢ pO(mi)
Eyoin = — Y Ep|l :
tra n; D[ng(a:i|D)] (5.8)
1

= Byen—~EBp [Asﬂ, (5.9)

and their relationship is given, when d is large, by
1 :
Egen = 'ﬁ + Eirain- (510)

The proof needs complicated calculations and is omitted here because of the
limitation of the space. We first fix w and calculate the integral over £, and then
calculate the predictive distribution.
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The theorem shows rather surprising results : The generalization error de-
creases as the number d of parameters increases. The relation between Egep, and
Ety4in does not depend on d, when d is large. These are completely different from
the regular case. However, these striking results are given rise to by the uniform
prior on ¢. The uniform prior puts strong emphasis on the singularity, showing
that one should be very careful for choosing a prior when the model includes
singularities.

The Jeffreys prior is uniform in w and n(¢) = |¢|%. This gives a Lebesgue
major on the surface of the cone, and looks natural. We show the results in the
following theorem whose proof is much more complicated.

Theorem 3. Under the assumption of the J effreys prior, the generalization
error of the predictive distribution is given by

Fyen = 5-Bp [lQ}(@)]. (511
where
Qi(z) = VSi(#), (5.12)
T/ . (a &)°
Sy(@) = log/ﬂ'(w)ld(a-m)exp 5 dw, (5.13)
Li(u) = \/%/Iz—i-ulde(_'z;)dz. (5.14)

(5.15)

When d is large, the generalization error increases in proportion to d. We can
calculate the training error similarily.

6. CONCLUSIONS AND DISCUSSIONS

We have analyzed the asymptotic behaviors of the MLE and Bayes estima-
tors in terms of the generalization error and the training error by using a simple
statistical model (cone model), when the true parameter is unidentifiable. Since
the classic paradigm of statistical inference based on the Cramér-Rao theorem
does not hold in such a singular case, we need a new theory. By analyzing the
relationship between the generalization error and the training error, we can ob-
tain a basic criterion for model selection. We can also compare the estimation
accuracy of the maximum likelihood estimator and the Bayesian predictive distri-
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bution from the results of analysis. Under the proposed framework, the various
estimation methods can be studied and compared to each other.
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