• Title/Summary/Keyword: Singular Vector

Search Result 85, Processing Time 0.029 seconds

A New Support Vector Compression Method Based on Singular Value Decomposition

  • Yoon, Sang-Hun;Lyuh, Chun-Gi;Chun, Ik-Jae;Suk, Jung-Hee;Roh, Tae-Moon
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.652-655
    • /
    • 2011
  • In this letter, we propose a new compression method for a high dimensional support vector machine (SVM). We used singular value decomposition (SVD) to compress the norm part of a radial basis function SVM. By deleting the least significant vectors that are extracted from the decomposition, we can compress each vector with minimized energy loss. We select the compressed vector dimension according to the predefined threshold which can limit the energy loss to design criteria. We verified the proposed vector compressed SVM (VCSVM) for conventional datasets. Experimental results show that VCSVM can reduce computational complexity and memory by more than 40% without reduction in accuracy when classifying a 20,958 dimension dataset.

Video Sequence Matching Using Normalized Dominant Singular Values

  • Jeong, Kwang-Min;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.785-793
    • /
    • 2009
  • This paper proposes a signature using dominant singular values for video sequence matching. By considering the input image as matrix A, a partition procedure is first performed to separate the matrix into non-overlapping sub-images of a fixed size. The SVD(Singular Value Decomposition) process decomposes matrix A into a singular value-singular vector factorization. As a result, singular values are obtained for each sub-image, then k dominant singular values which are sufficient to discriminate between different images and are robust to image size variation, are chosen and normalized as the signature for each block in an image frame for matching between the reference video clip and the query one. Experimental results show that the proposed video signature has a better performance than ordinal signature in ROC curve.

  • PDF

An Watermarking Method Based on Singular Vector Decomposition and Vector Quantization Using Fuzzy C-Mean Clustering (특이치 분해와 Fuzzy C-Mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법)

  • Lee, Byung-Hee;Jang, Woo-Seok;Kang, Hwan-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.964-969
    • /
    • 2007
  • In this paper, we propose the image watermarking method for good compression ratio and satisfactory image quality of the cover image and the embedding image. This method is based on the singular value decomposition and the vector quantization using fuzzy c-mean clustering. Experimental results show that the embedding image has invisibility and robustness to various serious attacks. The advantage of this watermarking method is that we can achieve both the compression and the watermarking method for the copyright protection simultaneously.

Roughening Transition of Crystals - Classical Thermodynamic Approach

  • Jo, Wook;Hwang, Nong-Moon;Kim, Doh-Yeon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.60-61
    • /
    • 2006
  • In this contribution, we attempted a theoretical analysis on the validity of the widely-accepted idea that rough and singular surfaces can coexist in a crystal at equilibrium. By manipulating the Cahn and Hoffman capillarity vector, the conclusion that a crystal at equilibrium should be composed either of singular surfaces or of rough ones was reached.

  • PDF

SINGULAR THIRD-ORDER 3-POINT BOUNDARY VALUE PROBLEMS

  • Palamides, Alex P.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.697-710
    • /
    • 2010
  • In this paper, we prove existence of infinitely many positive and concave solutions, by means of a simple approach, to $3^{th}$ order three-point singular boundary value problem {$x^{\prime\prime\prime}(t)=\alpha(t)f(t,x(t))$, 0 < t < 1, $x(0)=x'(\eta)=x^{\prime\prime}(1)=0$, (1/2 < $\eta$ < 1). Moreover with respect to multiplicity of solutions, we don't assume any monotonicity on the nonlinearity. We rely on a combination of the analysis of the corresponding vector field on the phase-space along with Knesser's type properties of the solutions funnel and the well-known Krasnosel'ski$\breve{i}$'s fixed point theorem. The later is applied on a new very simple cone K, just on the plane $R^2$. These extensions justify the efficiency of our new approach compared to the commonly used one, where the cone $K\;{\subset}\;C$ ([0, 1], $\mathbb{R}$) and the existence of a positive Green's function is a necessity.

Sensor Fault Detection of Small Turboshaft Engine for Helicopter

  • Seong, Sang-Man;Rhee, Ihn-Seok;Ryu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.97-104
    • /
    • 2008
  • Most of engine control systems for helicopter turboshaft engines are equipped with dual sensors. For the system with dual redundancy, analytic methods are used to detect faults based on the system dynamical model. Helicopter engine dynamics are affected by aerodynamic torque induced from the dynamics of the main rotor. In this paper an engine model including the rotor dynamics is constructed for the T700-GE-700 turboshaft engine powering UH-60 helicopter. The singular value decomposition(SVD) method is applied to the developed model in order to detect sensor faults. The SVD method which do not need an additional computation to generate residual uses the characteristics that the system outputs in direction of the left singular vector if an input is applied in direction of the right singular vector. Simulations show that the SVD method works well in detecting and isolating the sensor faults.

  • PDF

A study on the delay-characteristics and hankel operators of input delay systems (입력 시간지연 시스템의 한켈 연산자와 지연특성에 관한 연구)

  • Ha, Hee-Kwon;Hwang, I-Cheol;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • This paper studies the delay-characteristics using the singular values and vectors of Hankel operators for input delay systems. First, the computational method of Hankel singular values and their corresponding singular vectors are introduced, and then it is analytically provea that all the Hankel singular vlues have a monotone increasing properties as the length of delay time increases. Furthermore, through a simple numerical example, it is shown that the Hankel singular values are dependent only on the ratio of the time constant of a lumped parameter system to the length of delay , and in case that the time constant is relatively larger than the delay time, the lumped parameter characteristic has a great influence on the input delay systems.

  • PDF

Singular Representation and Finite Element Methods

  • 김석찬
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.9-9
    • /
    • 2003
  • Let $\Omega$ be a bounded, open, and polygonal domain in $R^2$ with re-entrant corners. We consider the following Partial Differential Equations: $$(I-\nabla\nabla\cdot+\nabla^{\bot}\nabla\times)u\;=\;f\;in\;\Omega$$, $$n\cdotu\;0\;0\;on\;{\Gamma}_{N}$$, $${\nabla}{\times}u\;=\;0\;on\;{\Gamma}_{N}$$, $$\tau{\cdot}u\;=\;0\;on\;{\Gamma}_{D}$$, $$\nabla{\cdot}u\;=\;0\;on\;{\Gamma}_{D}$$ where the symbol $\nabla\cdot$ and $\nabla$ stand for the divergence and gradient operators, respectively; $f{\in}L^2(\Omega)^2$ is a given vector function, $\partial\Omega=\Gamma_{D}\cup\Gamma_{N}$ is the partition of the boundary of $\Omega$; nis the outward unit vector normal to the boundary and $\tau$represents the unit vector tangent to the boundary oriented counterclockwise. For simplicity, assume that both $\Gamma_{D}$ and $\Gamma_{N}$ are nonempty. Denote the curl operator in $R^2$ by $$\nabla\times\;=\;(-{\partial}_2,{\partial}_1$$ and its formal adjoint by $${\nabla}^{\bot}\;=\;({-{\partial}_1}^{{\partial}_2}$$ Consider a weak formulation(WF): Find $u\;\in\;V$ such that $$a(u,v):=(u,v)+(\nabla{\cdot}u,\nabla{\cdot}v)+(\nabla{\times}u,\nabla{\times}V)=(f,v),\;A\;v{\in}V$$. (2) We assume there is only one singular corner. There are many methods to deal with the domain singularities. We introduce them shortly and we suggest a new Finite Element Methods by using Singular representation for the solution.

  • PDF

An Watermarking Method based on Singular Vector Decomposition and Vector Quantization using Fuzzy C-Mean Clustering (특이치 분해와 Fuzzy C-Mean(FCM) 클러스터링을 이용한 벡터양자화에 기반한 워터마킹 방법)

  • Lee, Byung-Hee;Kang, Hwan-Il;Jang, Woo-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10d
    • /
    • pp.7-11
    • /
    • 2007
  • In this paper the one of image hide method for good compression ratio and satisfactory image quality of the cover image and the embedding image based on the singular value decomposition and the vector quantization using fuzzy c-mean clustering is introduced. Experimental result shows that the embedding image has invisibility and robustness to various serious attacks.

  • PDF

SINGULAR SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS IN SEVERAL SPACE DIMENSIONS

  • Baek, Jeong-Seon;Kwak, Min-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1049-1064
    • /
    • 1997
  • We study the existence and uniqueness of nonnegative singular solution u(x,t) of the semilinear parabolic equation $$ u_t = \Delta u - a \cdot \nabla(u^q) = u^p, $$ defined in the whole space $R^N$ for t > 0, with initial data $M\delta(x)$, a Dirac mass, with M > 0. The exponents p,q are larger than 1 and the direction vector a is assumed to be constant. We here show that a unique singular solution exists for every M > 0 if and only if 1 < q < (N + 1)/(N - 1) and 1 < p < 1 + $(2q^*)$/(N + 1), where $q^* = max{q, (N + 1)/N}$. This result agrees with the earlier one for N = 1. In the proof of this result, we also show that a unique singular solution of a diffusion-convection equation without absorption, $$ u_t = \Delta u - a \cdot \nabla(u^q), $$ exists if and only if 1 < q < (N + 1)/(N - 1).

  • PDF