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In this letter, we propose a new compression method for a 
high dimensional support vector machine (SVM). We used 
singular value decomposition (SVD) to compress the norm part 
of a radial basis function SVM. By deleting the least significant 
vectors that are extracted from the decomposition, we can 
compress each vector with minimized energy loss. We select the 
compressed vector dimension according to the predefined 
threshold which can limit the energy loss to design criteria. We 
verified the proposed vector compressed SVM (VCSVM) for 
conventional datasets. Experimental results show that VCSVM 
can reduce computational complexity and memory by more 
than 40% without reduction in accuracy when classifying a 
20,958 dimension dataset. 
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I. Introduction 

1. Support Vector Machine 

Support vector machines (SVMs) [1] are popular techniques 
for machine learning classification. While SVMs have good 
accuracy and generalization properties, they can be slow to 
classify new examples relative to other machine learning 
methods such as neural networks. An SVM must compute the 
dot product of each query example with each of the support 
vectors (SVs), which can number in the hundreds or thousands. 
Previous research has focused on methods to speed up SVM 
evaluation by means of a reduction in the number of SVs [2]-
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[5].  

2. Problem Definition 

SV set Xs is a two dimensional matrix whose row vector is 
made up of an SV by 
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where xs,m is the m-th support vector. Also, x is the input vector 
to be classified. In this letter, we consider only a binary radial 
basis function (RBF) kernel SVM since others can be extended 
easily. The decision rule for a binary RBF SVM is 
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An SVM is defined by M+1 parameters: a weight αi, 
associated with each training example, and a bias term b. 

Since the norm value in the exponential part of f(x) in (2)  
must be calculated for each support vector s,i −x x , the  
computations are concentrated on the difference and square 
operations in order to obtain this norm value, as shown in Table 
1. In Table 1, the third column shows the required 
computations using a conventional SVM. The computations 
required to obtain norm values are almost N times that of other 
methods where N is a dimension of vector x.  

When we classify the image sources, vector dimension N 
usually reaches up to tens of thousands. If we assume that N 
and M are 2,000 and 1,500, respectively, the total number of 
required register words and squarers are both 3 million. This 
is not easy to implement on embedded systems for real-time 
operations. In this letter, we focus on reducing the 
computational complexity to make it possible to classify high 
dimensional feature vectors in real-time on embedded 
systems.  
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Table 1. Computational complexity for classification. 

 Computation orgSVM VCSVM 

1 Vector dimension N N 

1-1 Compressed dimension  P 

2 Support vectors M M 

3 Register for SVs N×M (N+M)×P 

3-1 Multiply X by Vs  N×P 

3-2 Accumulate for XVs  (N–1)×P 

4 Squares for norm N×M P×M 

5 Differences for norm N×M P×M 

6 Multiply – γ M M 

7 Exponential func. M M 

8 Multiply ai M M 

9 Accumulate M–1 M–1 

10 Add b 1 1 

 

 
II. Previous Work 

Since classification time scales with the number of support 
vectors used, one approach is to construct a reduced-set SVM 
that approximates a given SVM using far fewer support 
vectors [3]. Reduced-set vectors can also be used to selectively 
spend greater effort on examples that likely belong to a positive 
class, such as image regions likely to contain a face for face 
detection applications [6]. The ProgSVM method considers 
examples from all classes, and it can be applied to multiclass 
problems. The nearest support vectors method [2] is similar to 
ProgSVM in that it proposes an incremental classification 
process.  

However, all of these methods consider only the number of 
support vectors. For image classification applications, the 
vector dimension of each support vector is larger than the 
number of support vectors. The reduced vector dimension in 
addition to the reduced number of SVs can be a solution for a 
real time image classifier. 

III. Proposed Vector Compression Method 

1. Vector Decomposition 

The norm operation part can be decomposed using singular 
value decomposition (SVD) [7] as in 

s s s s s s ,T T- = -X X U D V XV V
         

(3) 

where  

 

Fig. 1. Cumulative function of lambda. 
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The diagonal components λi indicate the eigen values for the 
eigen vector Vs, and the total vector energy can be represented 
as E(n)=Σn

i=1λi
2. Thus, we can obtain the approximated matrix 

Xs simply by replacing λk through λn with zeros in Ds whose 
total vector energy is reduced by the amount of Er (k,n)= Σn

i=k λi
2. 

Figure 1 shows an example of λs and their cumulative energies 
from the SVs. This example was extracted from the pedestrian 
images featured by the histogram of oriented gradient (HOG 
[9]) method. In Fig. 1, the solid line represents λk, and the 
dashed line means E(k). As one can see in Fig. 1, almost all 
energy (90%, 95%, and 99%) is concentrated on the first P 
(182, 307, and 592) elements, respectively.  

2. Vector Compression Method 

Based on the vector decomposition given previously, we can 
obtain (4) with minimum signal energy loss with only P 
dimension vectors: 
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The norm for each support vector can also be compressed 
with minimum signal energy loss: 
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Fig. 2. Required registers for support vectors. 
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In (5), Us,iDs(:,1:P) can be calculated before classification, 
and XVs(:,1:P) needs to be calculated only once for all support 
vectors. The required registers for support vector storage are 
then reduced from M×N to (M+N)×P as can be seen in Fig. 2. 
In Fig. 2, the required register block whose size is M×P is used 
for compressed support vector storage and the N×P sized one 
is used to store eigen vectors for vector compression. 

The computational complexities for the SVM can be 
calculated as in Table 1. We call the proposed SVM vector 
compressed SVM (VCSVM) since we compressed the SVs in 
terms of their vector dimension. As you can see in Table 1, the 
items from 3-1 and 3-2 are overheads of VCSVM. So, we 
choose P as less than MN/(M+N).  

3. VCSVM Training/Classification 

Figure 3 shows a flow chart of VCSVM. In Fig. 3, there 
exists a step named ‘Reduce SVs’. It reduces support vector 
sets by using the method described in [3] as commented in 
section I. It can reduce computational complexity at the 
expense of reduced accuracy. In Fig. 3, xt is a training vector, 
SSV is the original support vector, T is the number of training 
vectors, N is vector dimension of each training vector, M is the 
number of support vectors, b is bias, S is reduced-set support 
vector, x is input vector, f(x) is classified result of x, and P is 
compressed support vector dimension. Tilde (~) means 
‘approximated’. 

IV. Experimental Results 

1. Experimental Environment 

We tested the proposed VCSVM with the datasets in [9]. 
Since the proposed algorithm was designed for high 
dimensional vector classification, we choose relatively high 
dimensional datasets in [9]. We used LIBSVM [10] for vector 
training and adopted SPRToolbox [11] to reduce support vector 
sets. Details of experimental examples are shown in Table 2.  

 

Fig. 3. Flow chart of VCSVM train/classify. 
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Table 2. Parameters used in experiments. 

Dataset Vector 
dimension 

Training 
vectors 

Test  
vectors 

Splice 60 1,000 2,175 

Mushrooms 112 1,000 7,124 

A1a 123 1,605 30,956 

Leukemia 7,129 38 34 

Real-sim 20,958 1,000 71,309 

Table 3. Computational complexity for Splice dataset classification.

Splice (total SVs: 362, P: 51) set [9], threshold=99%
 Original 

SVM 
RSSVM 

[3] 
VCSVM 
wo RS 

VCSVM 
w RS 

Req. reg. 
word 

(relative) 

21,720 
(100%) 

4,380 
(20%) 

21,522 
(99%) 

4,947 
(23%) 

Req. mult.
times  

(relative) 

22,444 
(100%) 

5,104 
(23%) 

22,246 
(99%) 

5,671 
(25%) 

Accuracy
(relative) 

88.46% 
(100%) 

88.55% 
(100.1%) 

83.45% 
(94.34%) 

82.99% 
(93.82%)

 

 
2. Results 

Tables 3 to 6 show the computational complexities and 
accuracies of the original SVM and VCSVM according to 
Table 1 when we classify the datasets in Table 2. We compared 
the experimental results of the original SVM using LIBSVM 
[10], the reduced-set SVM (RSSVM) using SPRToolbox [11], 
and the proposed VCSVM with/without the ‘Reduce SVs’ step 
in Fig. 3. 

For fair comparison, the parameters of RSSVM are set to have 
almost same accuracy with ‘VCSVM with RS’. In Tables 3 
through 6, the proposed VCSVM shows superior performance 
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Table 4. Computational complexity for Mushroom data set
classification. 

Mushroom (total SVs: 224, P: 46) set [9], 
threshold=99% 

 
Original 

SVM 
RSSVM 

[3] 
VCSVM 
wo RS 

VCSVM 
w RS 

Req. reg. 
word 

(relative) 

25,088 
(100%) 

3,584 
(14%) 

15,456 
(62%) 

5,612 
(22%) 

Req. mult. 
times 

(relative) 

25,536 
(100%) 

4,032 
(16%) 

15,904 
(62%) 

6,060 
(24%) 

Accuracy 
(relative) 

99.72% 
(100%) 

99.70% 
(99.98%) 

99.50% 
(99.78%) 

99.05% 
(99.33%)

Table 5. Computational complexity for A1a data set classification.

A1a (total SVs: 563, P:76) set [9], threshold=99% 
 Original 

SVM 
RSSVM 

[3] 
VCSVM 
wo RS 

VCSVM 
w RS 

Req. reg.  
word 

(relative) 

69,249 
(100%) 

28,782 
(42%) 

52,136 
(75%) 

27,132 
(39%) 

Req. mult. 
times  

(relative) 

70,375 
(100%) 

29,908 
(42%) 

53,262 
(76%) 

28,258 
(40%) 

Accuracy 
(relative) 

82.59% 
(100%) 

82.51% 
(99.90%) 

82.6% 
(100.0%) 

82.57% 
(99.98%)

Table 6. Computational complexity for Leukemia data set
classification. 

Leukemia (N:7,129, total SVs: 19, P: 5) set [11], 
threshold=60% 

 
Original 

SVM 
RSSVM 

[3] 
VCSVM 
wo RS 

VCSVM 
w RS 

Req. reg.  
word 

(relative) 

135,451 
(100%) 

106,935 
(79%) 

35,740 
(26%) 

35,655 
(26%) 

Req. mult. 
times  

(relative) 

135,489 
(100%) 

106,973 
(79%) 

35,778 
(26%) 

35,693 
(26%) 

Accuracy 
(relative) 

61.76% 
(100%) 

61.67% 
(100%) 

67.65% 
(109.5%) 

67.65% 
(109.5%)

 

to the conventional RSSVM when the vector dimension N is 
large although it shows different performance when N is small. 
Since the severe complexity problem is mainly caused by the 
high input vector dimension seen in Tables 3 through 6, the 
proposed algorithm, which has good performance in the case 
of a large N, can be a good solution for real-time high-
dimensional classification systems. 

V. Conclusion 

In this letter, we proposed a new vector compression 
algorithm to reduce the size of the support vector dimension. 
The proposed algorithm is very efficient when classifying high- 
dimensional input vectors which need much more complex 
computations. We expect that if we apply the proposed vector 
compression method to the training step, the complexity and 
the training time will be reduced significantly.  
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