
652 Sang-Hun Yoon et al. © 2011 ETRI Journal, Volume 33, Number 4, August 2011

In this letter, we propose a new compression method for a
high dimensional support vector machine (SVM). We used
singular value decomposition (SVD) to compress the norm part
of a radial basis function SVM. By deleting the least significant
vectors that are extracted from the decomposition, we can
compress each vector with minimized energy loss. We select the
compressed vector dimension according to the predefined
threshold which can limit the energy loss to design criteria. We
verified the proposed vector compressed SVM (VCSVM) for
conventional datasets. Experimental results show that VCSVM
can reduce computational complexity and memory by more
than 40% without reduction in accuracy when classifying a
20,958 dimension dataset.

Keywords: RBF SVM, SVD, vector compression.

I. Introduction

1. Support Vector Machine

Support vector machines (SVMs) [1] are popular techniques
for machine learning classification. While SVMs have good
accuracy and generalization properties, they can be slow to
classify new examples relative to other machine learning
methods such as neural networks. An SVM must compute the
dot product of each query example with each of the support
vectors (SVs), which can number in the hundreds or thousands.
Previous research has focused on methods to speed up SVM
evaluation by means of a reduction in the number of SVs [2]-

Manuscript received Sept. 15, 2010; revised Nov. 26, 2010; accepted Dec. 9, 2010.
This work was supported by the IT R&D program of MKE/KEIT [KI002162, Multi-

Camera Based High Speed Image Recognition SoC Platform].
Sang-Hun Yoon (phone: +82 42 860 1352, email: shyoon11@etri.re.kr), Chun-Gi Lyuh

(email: cglyuh@etri.re.kr), Ik-Jae Chun (email: ijchun@etri.re.kr), Jung-Hee Suk (email:
jhsuk@etri.re.kr), and Tae Moon Roh (email: tmroh@etri.re.kr) are with the Convergence
Components & Materials Research Laboratory, ETRI, Daejeon, Rep. of Korea.

doi:10.4218/etrij.11.0210.0349

[5].

2. Problem Definition

SV set Xs is a two dimensional matrix whose row vector is
made up of an SV by

s s,1 s,2 s,, , ,
TT T T

M⎡ ⎤= ⎣ ⎦X x x x , (1)

where xs,m is the m-th support vector. Also, x is the input vector
to be classified. In this letter, we consider only a binary radial
basis function (RBF) kernel SVM since others can be extended
easily. The decision rule for a binary RBF SVM is

()
2

s,

1
sign i

M

i i
i

f y e bγα − −

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ X Xx . (2)

An SVM is defined by M+1 parameters: a weight αi,
associated with each training example, and a bias term b.

Since the norm value in the exponential part of f(x) in (2)
must be calculated for each support vector s,i −x x , the
computations are concentrated on the difference and square
operations in order to obtain this norm value, as shown in Table
1. In Table 1, the third column shows the required
computations using a conventional SVM. The computations
required to obtain norm values are almost N times that of other
methods where N is a dimension of vector x.

When we classify the image sources, vector dimension N
usually reaches up to tens of thousands. If we assume that N
and M are 2,000 and 1,500, respectively, the total number of
required register words and squarers are both 3 million. This
is not easy to implement on embedded systems for real-time
operations. In this letter, we focus on reducing the
computational complexity to make it possible to classify high
dimensional feature vectors in real-time on embedded
systems.

A New Support Vector Compression Method
Based on Singular Value Decomposition

Sang-Hun Yoon, Chun-Gi Lyuh, Ik-Jae Chun, Jung-Hee Suk, and Tae Moon Roh

ETRI Journal, Volume 33, Number 4, August 2011 Sang-Hun Yoon et al. 653

Table 1. Computational complexity for classification.

 Computation orgSVM VCSVM

1 Vector dimension N N

1-1 Compressed dimension P

2 Support vectors M M

3 Register for SVs N×M (N+M)×P

3-1 Multiply X by Vs N×P

3-2 Accumulate for XVs (N–1)×P

4 Squares for norm N×M P×M

5 Differences for norm N×M P×M

6 Multiply – γ M M

7 Exponential func. M M

8 Multiply ai M M

9 Accumulate M–1 M–1

10 Add b 1 1

II. Previous Work

Since classification time scales with the number of support
vectors used, one approach is to construct a reduced-set SVM
that approximates a given SVM using far fewer support
vectors [3]. Reduced-set vectors can also be used to selectively
spend greater effort on examples that likely belong to a positive
class, such as image regions likely to contain a face for face
detection applications [6]. The ProgSVM method considers
examples from all classes, and it can be applied to multiclass
problems. The nearest support vectors method [2] is similar to
ProgSVM in that it proposes an incremental classification
process.

However, all of these methods consider only the number of
support vectors. For image classification applications, the
vector dimension of each support vector is larger than the
number of support vectors. The reduced vector dimension in
addition to the reduced number of SVs can be a solution for a
real time image classifier.

III. Proposed Vector Compression Method

1. Vector Decomposition

The norm operation part can be decomposed using singular
value decomposition (SVD) [7] as in

s s s s s s ,T T- = -X X U D V XV V

(3)

where

Fig. 1. Cumulative function of lambda.

0 500 1,000 1,5000

0.2

0.4

0.6

0.8

1.0

Index, k

N
or

m
al

iz
ed

 v
al

ue
s

90%

182

95%

307

99%

592

Cumulative function of lambdas
Lambdas

s s,1 s,2 s, s s s

s s

1

2

s 1

1

, , , ,

, : orthonormal and unitary matrix,
0 0 0

0 0 0
, .

0 0 0
0 0 0

TT T T T
M

i i

n

n

λ
λ

λ λ
λ

λ

+

−

⎡ ⎤= =⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ≥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X x x x U D V

U V

D

The diagonal components λi indicate the eigen values for the
eigen vector Vs, and the total vector energy can be represented
as E(n)=Σn

i=1λi
2. Thus, we can obtain the approximated matrix

Xs simply by replacing λk through λn with zeros in Ds whose
total vector energy is reduced by the amount of Er (k,n)= Σn

i=k λi
2.

Figure 1 shows an example of λs and their cumulative energies
from the SVs. This example was extracted from the pedestrian
images featured by the histogram of oriented gradient (HOG
[9]) method. In Fig. 1, the solid line represents λk, and the
dashed line means E(k). As one can see in Fig. 1, almost all
energy (90%, 95%, and 99%) is concentrated on the first P
(182, 307, and 592) elements, respectively.

2. Vector Compression Method

Based on the vector decomposition given previously, we can
obtain (4) with minimum signal energy loss with only P
dimension vectors:

()
()

() ()()

s s s s s s

s s s s

s s s

s s s:,1: :,1: .

T T

T

=

=

=

P P

− −

−

−

≈ −

X X U D V XV V

U D XV V

U D XV

U D XV

(4)

The norm for each support vector can also be compressed
with minimum signal energy loss:

654 Sang-Hun Yoon et al. ETRI Journal, Volume 33, Number 4, August 2011

Fig. 2. Required registers for support vectors.

...
Feature
vector

N

M +

P

N

PM

Vs(:,1:P)

Us,iDs(:,1:P)

() ()()s, s, s s:,1: :,1: .i i P - P − ≈X X U D XV

(5)

In (5), Us,iDs(:,1:P) can be calculated before classification,
and XVs(:,1:P) needs to be calculated only once for all support
vectors. The required registers for support vector storage are
then reduced from M×N to (M+N)×P as can be seen in Fig. 2.
In Fig. 2, the required register block whose size is M×P is used
for compressed support vector storage and the N×P sized one
is used to store eigen vectors for vector compression.

The computational complexities for the SVM can be
calculated as in Table 1. We call the proposed SVM vector
compressed SVM (VCSVM) since we compressed the SVs in
terms of their vector dimension. As you can see in Table 1, the
items from 3-1 and 3-2 are overheads of VCSVM. So, we
choose P as less than MN/(M+N).

3. VCSVM Training/Classification

Figure 3 shows a flow chart of VCSVM. In Fig. 3, there
exists a step named ‘Reduce SVs’. It reduces support vector
sets by using the method described in [3] as commented in
section I. It can reduce computational complexity at the
expense of reduced accuracy. In Fig. 3, xt is a training vector,
SSV is the original support vector, T is the number of training
vectors, N is vector dimension of each training vector, M is the
number of support vectors, b is bias, S is reduced-set support
vector, x is input vector, f(x) is classified result of x, and P is
compressed support vector dimension. Tilde (~) means
‘approximated’.

IV. Experimental Results

1. Experimental Environment

We tested the proposed VCSVM with the datasets in [9].
Since the proposed algorithm was designed for high
dimensional vector classification, we choose relatively high
dimensional datasets in [9]. We used LIBSVM [10] for vector
training and adopted SPRToolbox [11] to reduce support vector
sets. Details of experimental examples are shown in Table 2.

Fig. 3. Flow chart of VCSVM train/classify.

SVM train

SVD

Compress U, D, V with
E>threshold

Reduce SVs

Compress vector

Classify SVs

X

Xt[T×N]

SSV[M×N]

U, D, V

S []VS M P×
[],K P b×S

x

f(x)

Table 2. Parameters used in experiments.

Dataset Vector
dimension

Training
vectors

Test
vectors

Splice 60 1,000 2,175

Mushrooms 112 1,000 7,124

A1a 123 1,605 30,956

Leukemia 7,129 38 34

Real-sim 20,958 1,000 71,309

Table 3. Computational complexity for Splice dataset classification.

Splice (total SVs: 362, P: 51) set [9], threshold=99%
 Original

SVM
RSSVM

[3]
VCSVM
wo RS

VCSVM
w RS

Req. reg.
word

(relative)

21,720
(100%)

4,380
(20%)

21,522
(99%)

4,947
(23%)

Req. mult.
times

(relative)

22,444
(100%)

5,104
(23%)

22,246
(99%)

5,671
(25%)

Accuracy
(relative)

88.46%
(100%)

88.55%
(100.1%)

83.45%
(94.34%)

82.99%
(93.82%)

2. Results

Tables 3 to 6 show the computational complexities and
accuracies of the original SVM and VCSVM according to
Table 1 when we classify the datasets in Table 2. We compared
the experimental results of the original SVM using LIBSVM
[10], the reduced-set SVM (RSSVM) using SPRToolbox [11],
and the proposed VCSVM with/without the ‘Reduce SVs’ step
in Fig. 3.

For fair comparison, the parameters of RSSVM are set to have
almost same accuracy with ‘VCSVM with RS’. In Tables 3
through 6, the proposed VCSVM shows superior performance

ETRI Journal, Volume 33, Number 4, August 2011 Sang-Hun Yoon et al. 655

Table 4. Computational complexity for Mushroom data set
classification.

Mushroom (total SVs: 224, P: 46) set [9],
threshold=99%

Original

SVM
RSSVM

[3]
VCSVM
wo RS

VCSVM
w RS

Req. reg.
word

(relative)

25,088
(100%)

3,584
(14%)

15,456
(62%)

5,612
(22%)

Req. mult.
times

(relative)

25,536
(100%)

4,032
(16%)

15,904
(62%)

6,060
(24%)

Accuracy
(relative)

99.72%
(100%)

99.70%
(99.98%)

99.50%
(99.78%)

99.05%
(99.33%)

Table 5. Computational complexity for A1a data set classification.

A1a (total SVs: 563, P:76) set [9], threshold=99%
 Original

SVM
RSSVM

[3]
VCSVM
wo RS

VCSVM
w RS

Req. reg.
word

(relative)

69,249
(100%)

28,782
(42%)

52,136
(75%)

27,132
(39%)

Req. mult.
times

(relative)

70,375
(100%)

29,908
(42%)

53,262
(76%)

28,258
(40%)

Accuracy
(relative)

82.59%
(100%)

82.51%
(99.90%)

82.6%
(100.0%)

82.57%
(99.98%)

Table 6. Computational complexity for Leukemia data set
classification.

Leukemia (N:7,129, total SVs: 19, P: 5) set [11],
threshold=60%

Original

SVM
RSSVM

[3]
VCSVM
wo RS

VCSVM
w RS

Req. reg.
word

(relative)

135,451
(100%)

106,935
(79%)

35,740
(26%)

35,655
(26%)

Req. mult.
times

(relative)

135,489
(100%)

106,973
(79%)

35,778
(26%)

35,693
(26%)

Accuracy
(relative)

61.76%
(100%)

61.67%
(100%)

67.65%
(109.5%)

67.65%
(109.5%)

to the conventional RSSVM when the vector dimension N is
large although it shows different performance when N is small.
Since the severe complexity problem is mainly caused by the
high input vector dimension seen in Tables 3 through 6, the
proposed algorithm, which has good performance in the case
of a large N, can be a good solution for real-time high-
dimensional classification systems.

V. Conclusion

In this letter, we proposed a new vector compression
algorithm to reduce the size of the support vector dimension.
The proposed algorithm is very efficient when classifying high-
dimensional input vectors which need much more complex
computations. We expect that if we apply the proposed vector
compression method to the training step, the complexity and
the training time will be reduced significantly.

References

[1] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine
Learning, vol. 20, no. 3, 1995, pp. 273-297.

[2] D. DeCoste and D. Mazzoni, “Fast Query-Optimized Kernel
Machine Classification via Incremental Approximate Nearest
Support Vectors,” Proc. 20th ICML, 2003, pp. 115-122.

[3] K.L. Wagstaff et al., “Progressive Refinement for Support Vector
Machines,” Data Mining and Knowledge Discovery, vol. 20,
no. 1, 2010, pp. 53-69.

[4] C.J.C. Burges, “A Tutorial on Support Vector Machines for
Pattern Recognition,” Data Mining and Knowledge Discovery,
vol. 2, no. 2, 1998, pp. 121-167.

[5] D. Kim et al., “Use of Support Vector Regression in Stable Trajectory
Generation for Walking Humanoid Robots,” ETRI J., vol. 31, no. 5,
Oct. 2009, pp. 565-575.

[6] S. Romdhani et al., “Computationally Efficient Face Detection,”
Proc. ICCV, 2001, pp. 695-700.

[7] G. Strang, Introduction to Linear Algebra, 3rd ed., Wellesley-
Cambridge Press, 1998.

[8] P. Viola and M.J. Jones, “Robust Real-Time Face Detection,”
IJCV, 2004, pp. 137-154.

[9] LIBSVM Data. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/

[10] LIBSVM Tools. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
[11] SPRToolbox. http://cmp.felk.cvut.cz/cmp/software/stprtool/

