• Title/Summary/Keyword: Singular Point

Search Result 212, Processing Time 0.023 seconds

DYNAMICS OF TRANSCENDENTAL ENTIRE FUNCTIONS WITH SIEGEL DISKS AND ITS APPLICATIONS

  • Katagata, Koh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.713-724
    • /
    • 2011
  • We study the dynamics of transcendental entire functions with Siegel disks whose singular values are just two points. One of the two singular values is not only a superattracting fixed point with multiplicity more than two but also an asymptotic value. Another one is a critical value with free dynamics under iterations. We prove that if the multiplicity of the superattracting fixed point is large enough, then the restriction of the transcendental entire function near the Siegel point is a quadratic-like map. Therefore the Siegel disk and its boundary correspond to those of some quadratic polynomial at the level of quasiconformality. As its applications, the logarithmic lift of the above transcendental entire function has a wandering domain whose shape looks like a Siegel disk of a quadratic polynomial.

PERFORMANCE OF RICHARDSON EXTRAPOLATION ON SOME NUMERICAL METHODS FOR A SINGULARLY PERTURBED TURNING POINT PROBLEM WHOSE SOLUTION HAS BOUNDARY LAYERS

  • Munyakazi, Justin B.;Patidar, Kailash C.
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.679-702
    • /
    • 2014
  • Investigation of the numerical solution of singularly perturbed turning point problems dates back to late 1970s. However, due to the presence of layers, not many high order schemes could be developed to solve such problems. On the other hand, one could think of applying the convergence acceleration technique to improve the performance of existing numerical methods. However, that itself posed some challenges. To this end, we design and analyze a novel fitted operator finite difference method (FOFDM) to solve this type of problems. Then we develop a fitted mesh finite difference method (FMFDM). Our detailed convergence analysis shows that this FMFDM is robust with respect to the singular perturbation parameter. Then we investigate the effect of Richardson extrapolation on both of these methods. We observe that, the accuracy is improved in both cases whereas the rate of convergence depends on the particular scheme being used.

Numerically integrated modified virtual crack closure integral technique for 2-D crack problems

  • Palani, G.S.;Dattaguru, B.;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.731-744
    • /
    • 2004
  • Modified virtual crack closure integral (MVCCI) technique has become very popular for computation of strain energy release rate (SERR) and stress intensity factor (SIF) for 2-D crack problems. The objective of this paper is to propose a numerical integration procedure for MVCCI so as to generalize the technique and make its application much wider. This new procedure called as numerically integrated MVCCI (NI-MVCCI) will remove the dependence of MVCCI equations on the type of finite element employed in the basic stress analysis. Numerical studies on fracture analysis of 2-D crack (mode I and II) problems have been conducted by employing 4-noded, 8-noded (regular & quarter-point), 9-noded and 12-noded finite elements. For non-singular (regular) elements at crack tip, NI-MVCCI technique generates the same results as MVCCI, but the advantage for higher order regular and singular elements is that complex equations for MVCCI need not be derived. Gauss numerical integration rule to be employed for 8-noded singular (quarter-point) element for accurate computation of SERR and SIF has been recommended based on the numerical studies.

BOUNDARY VALUE PROBLEMS FOR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL INEQUALITY IN BANACH SPACE

  • KARTHIKEYAN, K.;CHANDRAN, C.;TRUJILLO, J.J.
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.3_4
    • /
    • pp.193-206
    • /
    • 2016
  • In this paper, we study boundary value problems for fractional integrodifferential equations involving Caputo derivative in Banach spaces. A generalized singular type Gronwall inequality is given to obtain an important priori bounds. Some sufficient conditions for the existence solutions are established by virtue of fractional calculus and fixed point method under some mild conditions.

A PETROV-GALERKIN METHOD FOR A SINGULARLY PERTURBED ORDINARY DIFFERENTIAL EQUATION WITH NON-SMOOTH DATA

  • Zheng T.;Liu F.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.317-329
    • /
    • 2006
  • In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.

EXISTENCE AND NONEXISTENCE OF POSITIVE SOLUTIONS TO NONLOCAL BOUNDARY VALUE PROBLEMS WITH STRONG SINGULARITY

  • Chan-Gyun Kim
    • East Asian mathematical journal
    • /
    • v.39 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • In this paper, we consider φ-Laplacian nonlocal boundary value problems with singular weight function which may not be in L1(0, 1). The existence and nonexistence of positive solutions to the given problem for parameter λ belonging to some open intervals are shown. Our approach is based on the fixed point index theory.

Resistivity Tomography in an Inclined Borehole to Surface Purvey Using a Pole-dipole Array (단극-쌍극자 배열을 이용한 경사시추공-지표 탐사에서 전기비저항 토모그래피)

  • Park Jong-Oh;Kim Hee-Joon;Park Chung-Hwa
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.255-263
    • /
    • 2006
  • In an electrical tomographic survey using an inclined borehole with a pole-dipole array, we must consider several factors: a singular point associated with zero potential difference, a spatial discrepancy between electrode and nodal point in a model due to a inclined borehole, and a variation of geometric factors in connection with a irregular topography. Singular points which are represented by the normal distance from current source to the ground surface can be represented by serveral regions due to a irregular topography of ground surface. The method of element division can be applied to the region in which the borehole is curved, inclined or the distance between the electrodes is shorter than that of nodal points, because the coordinate of each electrode cannot be assigned directly to the nodal point if several electrodes are in an element. Test on a three-dimensional (3-D) synthetic model produces good images of conductive target and shoves stable convergence.

Efficient Method of Singular Value for Inverse Problem (역 문제에 대한 특이치 효율화)

  • Park, Sung-Oan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.232-240
    • /
    • 2012
  • This study proposed efficient method of singular value for inverse problem, linear approximation of contact position and loading in single and double meshing of transmission contact element, using 2-dimension model considered near the tooth by root stress. Determination of root stress is carried out for the gear tooth by finite element method and boundary element method. Boundary element discretization near contact point is carefully performed to keep high computational accuracy. The predicted results of boundary element method are good accordance with that of finite element method.

SOME CHARACTERIZATIONS OF SINGULAR COMPACTIFICATIONS

  • Park, Keun
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.4
    • /
    • pp.943-947
    • /
    • 1995
  • Assume that X is locally compact and Hausdorff. Then, we show that $\alpha X = sup {X \cup_f S(f)$\mid$f \in S^{\alpha}}$ for any compactification $\alpha X$ of X if and only if for any 2-point compatification $\gamma X$ of X with $\gamma X - X = {-\infty, +\infty}$, there exists a clopen subset A of \gamma X$ such that $-\infty \in A$ and $+\infty \notin A$. As a corollary, we obtain that if X is connected and locally connected, then $\alpha X = sup {X \cup_f S(f)$\mid$f \in S^{\alpha}}$ for any compactification $\alpha X$ of X if and only if X is 1-complemented.

  • PDF