• 제목/요약/키워드: Silicon-on-insulator

검색결과 349건 처리시간 0.033초

Novel AC bias compensation scheme in hydrogenated amorphous silicon TFT for AMOLED Displays

  • Parikh, Kunjal;Chung, Kyu-Ha;Choi, Beom-Rak;Goh, Joon-Chul;Huh, Jong-Moo;Song, Young-Rok;Kim, Nam-Deog;Choi, Joon-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1701-1703
    • /
    • 2006
  • Here we describe a novel driving scheme in the form of negative AC bias stress (NAC) to compensate shift in the threshold voltage for hydrogenated amorphous silicon (${\alpha}$-Si:H) thin film transistor (TFT) for AMOLED applications. This scheme preserves the threshold voltage shift of ${\alpha}$-Si:H TFT for infinitely long duration of time(>30,000 hours) and thereby overall performance, without using any additional TFTs for compensation. We briefly describe about the possible driving schemes in order to implement for real time AMOLED applications. We attribute most of the results based on concept of plugging holes and electrons across the interface of the gate insulator in a controlled manner.

  • PDF

나노 구조에서 실리콘 산화 절연막의 스트레스 유기 누설전류 (Stress Induced Leakage Currents in the Silicon Oxide Insulator with the Nano Structures)

  • 강창수
    • 대한전자공학회논문지TE
    • /
    • 제39권4호
    • /
    • pp.335-340
    • /
    • 2002
  • 본 논문에서 얇은 실리콘 산화막의 스트레스 유기 누설전류는 나노 구조를 갖는 트랜지스터의 ULSI 실현을 위하여 조사하였다. 인가전압의 온 오프 시간에 따른 스트레스전류와 전이전류는 실리콘 산화막에 고전압 스트레스 유기 트랩분포를 측정하기 위하여 사용하였다. 스트레스전류와 전이전류는 고스트레스 전압에 의해 발생된 트랩의 충방전과 양계면 가까이에 발생된 트랩의 터널링에 기인한다. 스트레스 유기 누설전류는 전기적으로 기록 및 소거를 실행하는 메모리 소자에서 데이터 유지 능력에 영향이 있음을 알았다. 스트레스전류, 전이전류 그리고 스트레스 유기 누설전류의 두께 의존성에 따른 산화막 전류는 게이트 면적이 10/sup -3/㎠인 113.4Å에서 814Å까지의 산화막 두께를 갖는 소자에서 측정하였다. 스트레스 유기 누설전류, 스트레스전류, 그리고 전이전류는 데이터 유지를 위한 산화막 두께의 한계에 대해 연구 조사하였다.

$Al_2{O_3}$절연박막의 형성과 그 활용방안에 관한 연구 (A study on the growth of $Al_2{O_3}$ insulation films and its application)

  • 김종열;정종척;박용희;성만영
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권1호
    • /
    • pp.57-63
    • /
    • 1994
  • Aluminum oxide($Al_2{O_3}$) offers some unique advantages over the conventional silicon dioxide( $SiO_{2}$) gate insulator: greater resistance to ionic motion, better radiation hardness, possibility of obtaining low threshold voltage MOS FETs, and possibility of use as the gate insulator in nonvolatile memory devices. We have undertaken a study of the dielectric breakdown of $Al_2{O_3}$ on Si deposited by GAIVBE technique. In our experiments, we have varied the $Al_2{O_3}$ thickness from 300.angs. to 1400.angs. The resistivity of $Al_2{O_3}$ films varies from 108 ohm-cm for films less than 100.angs. to 10$_{13}$ ohm-cm for flims on the order of 1000.angs. The flat band shift is positive, indicating negative charging of oxide. The magnitude of the flat band shift is less for negative bias than for positive bias. The relative dielectric constant was 8.5-10.5 and the electric breakdown fields were 6-7 MV/cm(+bias) and 11-12 MV/cm (-bias).

  • PDF

Temperature Dependence of Nanoscale Friction and Conductivity on Vanadium Dioxide Thin Film During Metal-Insulator Transition

  • Kim, Jong Hun;Fu, Deyi;Kwon, Sangku;Wu, Junqiao;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.143.2-143.2
    • /
    • 2013
  • Nanomechanical and electrical properties of vanadium dioxide (VO2) thin films across thermal-driven phase transition are investigated with ultra-high vacuum atomic force microscopy. VO2 thin films have been deposited on the n-type heavily doped silicon wafer by pulsed laser deposition. X-ray diffraction reveals that it is textured polycrystalline with preferential orientation of (100) and (120) planes in monoclinic phase. As the temperature increases, the friction decreased at the temperature below the transition temperature, and then the friction increased as increasing temperature above the transition temperature. We attribute this observation to the combined effect of the thermal lubricity and electronic contribution in friction. Furthermore, the dependence of nanoscale conductance on the local pressure was indicated at the various temperatures, and the result was discussed in the view of pressure-induced metal-insulator transition.

  • PDF

높은 열처리 온도를 갖는 GOI 웨이퍼의 직접접합 (Direct Bonding of GOI Wafers with High Annealing Temperatures)

  • 변영태;김선호
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.652-655
    • /
    • 2006
  • A direct wafer bonding process necessary for GaAs-on-insulator (GOI) fabrication with high thermal annealing temperatures was studied by using PECVD oxides between gallium arsenide and silicon wafers. In order to apply some uniform pressure on initially-bonded wafer pairs, a graphite sample holder was used for wafer bonding. Also, a tool for measuring the tensile forces was fabricated to measure the wafer bonding strengths of both initially-bonded and thermally-annealed samples. GaAs/$SiO_2$/Si wafers with 0.5-$\mu$m-thick PECVD oxides were annealed from $100^{\circ}C\;to\;600^{\circ}C$. Maximum bonding strengths of about 84 N were obtained in the annealing temperature range of $400{\sim}500^{\circ}C$. The bonded wafers were not separated up to $600^{\circ}C$. As a result, the GOI wafers with high annealing temperatures were demonstrated for the first time.

DLC 박막이 코팅된 폴리머 애자의 표면 및 물리적 특성 (Surface and Physical Properties of Polymer Insulator Coated with Diamond-Like Carbon Thin Film)

  • 김영곤;박용섭
    • 한국전기전자재료학회논문지
    • /
    • 제34권1호
    • /
    • pp.16-20
    • /
    • 2021
  • In this study, we tried finding new materials to improve the stain resistance properties of polymer insulating materials. Using the filtered vacuum arc source (FVAS) with a graphite target source, DLC thin films were deposited on silicon and polymer insulator substrates depending on their thickness to confirm the surface properties, physical properties, and structural properties of the thin films. Subsequently, the possibility of using a DLC thin film as a protective coating material for polymer insulators was confirmed. DLC thin films manufactured in accordance with the thickness of various thin films exhibited a very smooth and uniform surface. As the thin film thickness increased, the surface roughness value decreased and the contact angle value increased. In addition, the elastic modulus and hardness of the DLC thin film slightly increased, and the maximum values of elastic modulus and hardness were 214.5 GPa and 19.8 GPa, respectively. In addition, the DLC thin film showed a very low leakage current value, thereby exhibiting electrical insulation properties.

Newly Synthesized Silicon Quantum Dot-Polystyrene Nanocomposite Having Thermally Robust Positive Charge Trapping

  • Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, Hyun-Dam
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.221-221
    • /
    • 2013
  • Striving to replace the well known silicon nanocrystals embedded in oxides with solution-processable charge-trapping materials has been debated because of large scale and cost effective demands. Herein, a silicon quantum dot-polystyrene nanocomposite (SiQD-PS NC) was synthesized by postfunctionalization of hydrogen-terminated silicon quantum dots (H-SiQDs) with styrene using a thermally induced surface-initiated polymerization approach. The NC contains two miscible components: PS and SiQD@PS, which respectively are polystyrene and polystyrene chains-capped SiQDs. Spin-coated films of the nanocomposite on various substrate were thermally annealed at different temperatures and subsequently used to construct metal-insulator-semiconductor (MIS) devices and thin film field effect transistors (TFTs) having a structure p-$S^{++}$/$SiO_2$/NC/pentacene/Au source-drain. C-V curves obtained from the MIS devices exhibit a well-defined counterclockwise hysteresis with negative fat band shifts, which was stable over a wide range of curing temperature ($50{\sim}250^{\circ}C$. The positive charge trapping capability of the NC originates from the spherical potential well structure of the SiQD@PS component while the strong chemical bonding between SiQDs and polystyrene chains accounts for the thermal stability of the charge trapping property. The transfer curve of the transistor was controllably shifted to the negative direction by chaining applied gate voltage. Thereby, this newly synthesized and solution processable SiQD-PS nanocomposite is applicable as charge trapping materials for TFT based memory devices.

  • PDF

SiON buffer layer를 이용한 MFIS Capacitor의 제작 및 특성 (Fabrications and properties of MFIS capacitor using SiON buffer layer)

  • 정상현;정순원;인용일;김광호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.70-73
    • /
    • 2001
  • MFIS(Metal-ferroelectric-insulator- semiconductor) structures using silicon oxynitride(SiON) buffer layers were fabricatied and demonstrated nonvolatile memory operations. Oxynitride(SiON) films have been formed on p-Si(100) by RTP(rapid thermal process) in O$_2$+N$_2$ ambient at 1100$^{\circ}C$. The gate leakage current density of Al/SiON/Si(100) capacitor was about the order of 10$\^$-8/ A/cm$^2$ at the range of ${\pm}$ 2.5 MV/cm. The C-V characteristics of Al/LiNbO$_3$/SiON/Si(100) capacitor showed a hysteresis loop due to the ferroelectric nature of the LiNbO$_3$ thin films. Typical dielectric constant value of LiNbO$_3$ film of MFIS device was about 24. The memory window width was about 1.2V at the electric field of ${\pm}$300 kV/cm ranges.

  • PDF

Rigorous Design of 22-nm Node 4-Terminal SOI FinFETs for Reliable Low Standby Power Operation with Semi-empirical Parameters

  • Cho, Seong-Jae;O'uchi, Shinichi;Endo, Kazuhiko;Kim, Sang-Wan;Son, Young-Hwan;Kang, In-Man;Masahara, Meishoku;Harris, James S.Jr;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권4호
    • /
    • pp.265-275
    • /
    • 2010
  • In this work, reliable methodology for device design is presented. Based on this method, the underlap length has been optimized for minimizing the gateinduced drain leakage (GIDL) in a 22-nm node 4-terminal (4-T) silicon-on-insulator (SOI) fin-shaped field effect transistor (FinFET) by TCAD simulation. In order to examine the effects of underlap length on GIDL more realistically, doping profile of the source and drain (S/D) junctions, carrier lifetimes, and the parameters for a band-to-band tunneling (BTBT) model have been experimentally extracted from the devices of 90-nm channel length as well as pnjunction test element groups (TEGs). It was confirmed that the underlap length should be near 15 nm to suppress GIDL effectively for reliable low standby power (LSTP) operation.

후속열처리 공정을 이용한 FD Strained-SOI 1T-DRAM 소자의 동작특성 개선에 관한 연구

  • 김민수;오준석;정종완;조원주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.35-35
    • /
    • 2009
  • Capacitorless one transistor dynamic random access memory (1T-DRAM) cells were fabricated on the fully depleted strained-silicon-on-insulator (FD sSOI) and the effects of silicon back interface state on buried oxide (BOX) layer on the memory properties were evaluated. As a result, the fabricated 1T-DRAM cells showed superior electrical characteristics and a large sensing current margin (${\Delta}I_s$) between "1" state and "0" state. The back interface of SOI based capacitorless 1T-DRAM memory cell plays an important role on the memory performance. As the back interface properties were degraded by increase rapid thermal annealing (RTA) process, the performance of 1T-DRAM was also degraded. On the other hand, the properties of back interface and the performance of 1T-DRAM were considerably improved by post RTA annealing process at $450^{\circ}C$ for 30 min in a 2% $H_2/N_2$ ambient.

  • PDF