Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.1.16

Surface and Physical Properties of Polymer Insulator Coated with Diamond-Like Carbon Thin Film  

Kim, Young Gon (Department of Electronics, Chosun College of Science & Technology)
Park, Yong Seob (Department of Electronics, Chosun College of Science & Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.1, 2021 , pp. 16-20 More about this Journal
Abstract
In this study, we tried finding new materials to improve the stain resistance properties of polymer insulating materials. Using the filtered vacuum arc source (FVAS) with a graphite target source, DLC thin films were deposited on silicon and polymer insulator substrates depending on their thickness to confirm the surface properties, physical properties, and structural properties of the thin films. Subsequently, the possibility of using a DLC thin film as a protective coating material for polymer insulators was confirmed. DLC thin films manufactured in accordance with the thickness of various thin films exhibited a very smooth and uniform surface. As the thin film thickness increased, the surface roughness value decreased and the contact angle value increased. In addition, the elastic modulus and hardness of the DLC thin film slightly increased, and the maximum values of elastic modulus and hardness were 214.5 GPa and 19.8 GPa, respectively. In addition, the DLC thin film showed a very low leakage current value, thereby exhibiting electrical insulation properties.
Keywords
Diamond-like carbon; Filtered vacuum arc source; Contact angle; Hardness; Surface roughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. K. Roy and K. R Lee, J. Biomed. Mater. Res., Part B, 83B, 72 (2007). [DOI: https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.b.30768]   DOI
2 T. Hasebe, Y. Matsuoka, H. Kodama, T. Saito, S. Yohena, A. Kamijo, N. Shiraga, M. Higuchi, S. Kuribayashi, K. Takahashi, and T. Suzuki, Diamond Relat. Mater., 15, 129 (2006). [DOI: https://doi.org/10.1016/j.diamond.2005.08.025]   DOI
3 J. A. McLaughlin, B. Meenan, P. Maguire, and N. Jamieson, Diamond Relat. Mater., 5, 486 (1996). [DOI: https://doi.org/10.1016/0925-9635(96)80065-3]   DOI
4 P. D. Maguire, J. A. McLaughlin, T.I.T. Okpalugo, P. Lemoine, P. Papakonstantinou, E. T. McAdams, M. Needham, A. A. Ogwu, M. Ball, and G. A. Abbas, Diamond Relat. Mater., 14, 1277 (2005). [DOI: https://doi.org/10.1016/j.diamond.2004.12.023]   DOI
5 E. Liu and H. W. Kwek, Thin Solid Films, 516, 5201 (2008). [DOI: https://doi.org/10.1016/j.tsf.2007.07.089]   DOI
6 K. N. Kang, H. Jeong, J. Lee, and Y. S. Park, J. Nanosci. Nanotechnol., 18, 5965 (2018). [DOI: https://doi.org/10.1166/jnn.2018.15600]   DOI
7 A. C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000). [DOI: https://doi.org/10.1103/PhysRevB.61.14095]   DOI
8 A. C. Ferrari, Surf. Coat. Technol., 180, 190 (2004). [DOI: https://doi.org/10.1016/j.surfcoat.2003.10.146]   DOI
9 G. A. Mesyats, IEEE Trans. Plasma Sci., 23, 879 (1995). [DOI: https://doi.org/10.1109/27.476469]   DOI
10 E. M. Oks, A. Anders, I. G. Brown, M. R. Dickinson, and R. A. MacGill, IEEE Trans. Plasma Sci., 24, 1174 (1996). [DOI: https://doi.org/10.1109/27.533127]   DOI
11 A. Grill, Thin Solid Films, 355, 189 (1999). [DOI: https://doi.org/10.1016/S0040-6090(99)00516-7]   DOI
12 M. C. Polo, J. L. Andujar, A. Hart, J. Robertson, and W. I. Milne, Diamond Relat. Mater., 9, 663 (2000). [DOI: https://doi.org/10.1016/S0925-9635(99)00339-8]   DOI
13 J. K. Shin, C. S. Lee, K. R. Lee, and K. Y. Eun, Appl. Phys. Lett., 78, 631 (2001). [DOI: https://doi.org/10.1063/1.1343840]   DOI