• Title/Summary/Keyword: Silicon vapor

Search Result 671, Processing Time 0.027 seconds

Nanomechanical Properties of Lithiated Silicon Nanowires Probed with Atomic Force Microscopy (원자힘 현미경으로 측정된 리튬화 실리콘 나노선의 나노기계적 성질)

  • Lee, Hyun-Soo;Shin, Weon-Ho;Kwon, Sang-Ku;Choi, Jang-Wook;Park, Jeong-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.395-402
    • /
    • 2011
  • The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value ($0.65{\pm}0.05$ nm) for lithiated silicon nanowire and a higher value ($1.72{\pm}0.16$ nm) for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value (~15 nN) than that of the Si nanowire substrate (~60 nN) by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The elastic local spring constants obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively smaller value (16.98 N/m) than lithiated silicon nanowire (66.30 N/m) due to the elastically soft amorphous structures. The frictional forces of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.

Growth of highly purified carbon nanotubes by thermal chemical vapor deposition (열화학기상증착법에 의한 고순도 탄소나노튜브의 성장)

  • Lee, Tae-Jae;Lee, Cheol-Jin;Kim, Dae-Won;Park, Jung-Hoon;Son, Kwon-Hee;Lyu, Seung-Chul;Song, Hong-Ki;Kim, Seong-Jeen
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1839-1842
    • /
    • 1999
  • We have synthesized carbon nanotubes by thermal chemical vapor deposition of $C_2H_2$ on transition metal-coated silicon substrates. Carbon nanotubes are uniformly synthesized on a large area of the plain Si substrates, different from Previously reported porous Si substrates. It is observed that surface modification of transition metals deposited on substrates by either etching with dipping in a HF solution and/or $NH_3$ pretreatment is a crucial step for the nanotube growth prior to the reaction of $C_2H_2$ gas. We will demonstrate that the diameters of carbon naotubes can be controlled by applying the different transition metals.

  • PDF

Influence of transient surface hydrogen on Aluminum catalyzed Silicon nanowire growth

  • Sin, Nae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.125.2-125.2
    • /
    • 2016
  • Semiconductor nanowires are essential building blocks for various nanotechnologies including energy conversion, optoelectronics, and thermoelectric devices. Bottom-up synthetic approach utilizing metal catalyst and vapor phase precursor molecules (i.e., vapor - liquid - solid (VLS) method) is widely employed to grow semiconductor nanowires. Al has received attention as growth catalyst since it is free from contamination issue of Si nanowire leading to the deterioration of electrical properties. Al-catalyzed Si nanowire growth, however, unlike Au-Si system, has relatively narrow window for stable growth, showing highly tapered sidewall structure at high temperature condition. Although surface chemistry is generally known for its role on the crystal growth, it is still unclear how surface adsorbates such as hydrogen atoms and the nanowire sidewall morphology interrelate in VLS growth. Here, we use real-time in situ infrared spectroscopy to confirm the presence of surface hydrogen atoms chemisorbed on Si nanowire sidewalls grown from Al catalyst and demonstrate they are necessary to prevent unwanted tapering of nanowire. We analyze the surface coverage of hydrogen atoms quantitatively via comparison of Si-H vibration modes measured during growth with those obtained from postgrowth measurement. Our findings suggest that the surface adsorbed hydrogen plays a critical role in preventing nanowire sidewall tapering and provide new insights for the role of surface chemistry in VLS growth.

  • PDF

A Study on Detailed Structural Variation of Diamond-like Carbon Thin Film by a Novel Raman Mapping Method (라만 맵핑 방식을 사용한 다이아몬드상 카본박막의 미세구조변화에 관한 연구)

  • Choi, Won-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.618-623
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas. The wear track on the DLC films was examined after the ball-on disk (BOD) measurement with a Raman mapping method. The BOD measurement of the DLC films was performed for 1 to 3 hours with a 1-hour step time. The sliding traces on the hydrogenated DLC film after the BOD measurement were also observed using an optical microscope. The surface roughness and cross-sectional images of the wear track were obtained using an atomic force microscope (AFM). The novel Raman mapping method effectively shows the graphitization of DLC films of $300{\mu}m\times300{\mu}m$ area according to the sliding time by G-peak positions (intensities) and $I_D/I_G$ ratios.

The effects of oxygen on selective Si epitaxial growth using disilane ane hydrogen gas in low pressure chemical vapor deposition ($Si_2H_6$$H_2$ 가스를 이용한 LPCVD내에서의 선택적 Si 에피텍시 성장에 미치는 산소의 영향)

  • 손용훈;박성계;김상훈;이웅렬;남승의;김형준
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2002
  • Selective epitaxial growth(SEG) of silicon were performed at low temperature under an ultraclean environment below $1000^{\circ}C$ using ultraclean $Si_2H_6$ and $H_2$ gases ambient in low pressure chemical vapor deposition(LPCVD). As a result of ultraclean processing, epitaxial Si layers with good quality were obtained for uniform and SEG wafer at temperatures range 600~$710^{\circ}C$ and an incubation period of Si deposition only on $SiO_2$ was found. Low-temperature Si selectivity deposition condition and epitaxy on Si were achieved without addition of HCl. The epitaxial layer was found to be thicker than the poly layer deposited over the oxide. Incubation period prolonged for 20~30 sec can be obtained by $O_2$addition. The surface morphologies & cross sections of the deposited films were observed with SEM, The structure of the Si films was evaluated XRD.

Pore Structure Modification and Characterization of Porous Cordierite with Chemical Vapor Infiltration (CVI) SiC Whisker (화학증착 탄화규소 휘스커에 의한 다공성 코디어라이트의 기공구조 개질 및 특성평가)

  • Kim, Ik-Whan;Kim, Jun-Gyu;Lee, Hwan-Sup;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.132-137
    • /
    • 2008
  • The main purpose of this study is enhancing the filtering efficiency, performance and durability of filter by growing SiC whiskers on cordierite honeycomb substrate. The experiment was performed by Chemical Vapor Infiltration (CVI) in order to control pore morphology of substrate. Increasing the mechanical strength of porous substrate is one of important issues. The formation of "networking structure" in the pore of porous substrate increased mechanical strength. The high pressure gas injection to the specimen showed that a little of whiskers were separated from substrate but additional film coating enhanced the stability of whisker at high pressure gas injection. Particle trap test was performed. More nano-particle was trapped by whisker growth at the pore of substrate. Therefore it is expected that the porous cordierite which deposited the SiC whisker will be the promising material for the application as filter trapping the nano-particles.

Poly-Si Thin Films by Hot-wire Chemical Vapor Deposition Method (열선 CVD법에 의한 다결정 실리콘 박막증착 및 특성분석)

  • Chung, Y.S.;Lee, J.C.;Kim, S.K.;Youn, K.H.;Song, J.S.;Park, I.J.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1030-1033
    • /
    • 2003
  • This paper presents the deposition characterization of polycrystalline silicon films by the HWCVD(Hot-wire Chemical Vapor Deposition) method at low substrate($300^{\circ}C$). The filament temperature, pressure and $SiH_4$ concentration were determined to be a critical parameter for the deposition of poly-Si films. Series A was deposited under the conditions of $1380^{\circ}C$(Tf), 100 mTorr and $2{\sim}10%\{SiH_4/(SiH_4+H_2)\}$ for 60 min. Series B was deposited under the conditions of $1400{\sim}1450^{\circ}C$ (Tf), 30 mTorr and $2{\sim}12%$ for 60 min. The physical characteristics were measured by Raman and FTIR spectroscopy, dark and photoconductivity measurements under AM1.5 illumination.

  • PDF

The semiconductor carbon nanotube growth with atmosphere pressure chemical vapor deposition method and oxidation effect at $300^{\circ}C$ in air (상압화학기상 증착법에 의한 반도체탄소나노튜브의 성장과 $300^{\circ}C$ 대기에서의 산화열처리 효과)

  • Kim, Jwa-Yeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.57-60
    • /
    • 2005
  • Semiconductor carbon nanotube was grown on oxided silicon wafer with atmosphere pressure chemical vapor deposition (APCVD) method and investigated the electrical property after thermal oxidation at $300^{\circ}C$ in air. The electrical property was measured at room temperature in air after thermal oxidation at $300^{\circ}C$ for various times in air. Semiconductor carbon nanotube was steadily changed to metallic carbon nanotube as increasing of thermal oxidation times at $300^{\circ}C$ in air. Some removed area of carbon nanotube surface was shown with transmission electron microscopy (TEM) after thermal oxidation for 6 hours at $300^{\circ}C$ in air.

Nanocrystalline-Si Thin Film Deposited by Inductively Coupled Plasma Chemical Vapor Deposition (ICP-CVD) at $150^{\circ}C$ (극저온($150^{\circ}C$)에서 ICP-CVD로 증착한 Nanocrystalline-Si 박막)

  • Park, Snag-Geun;Han, Sang-Myeon;Shin, Kwang-Sub;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.12-14
    • /
    • 2005
  • Inductively Coupled Plasma Chemical Vapor Deposition(ICP-CVD)를 이용하여 공정온도 $150^{\circ}C$에서 Nanocrystalline silicon (nc-Si) 박막을 증착하였다. 실험에서 헬륨(He)가스, 수소($H_2$)가스 그리고 헬륨(He)과 수소($H_2$)의 혼합가스로 희석한 사일렌($SiH_4$)을 반응가스로 이용하였다. 이 혼합가스는 3sccm의 사일렌($SiH_4$)에 헬륨(He)과 수소($H_2$)의 주입율을 20sccm에서부터 60sccm까지 변화시켜 조건을 달리하여 사용했다. 증착한 Nc-Si 박막을 X-ray diffraction (XRD)으로 분석하여 각각의 조건에 대한 Nc-Si 박막의 속성을 연구하였다. 헬륨(He) 또는 수소($H_2$) 혼합가스의 주입율이 커지면서 <111>과 <222>의 최고점(peak)이 더 높아졌으며 결정화 되지 않고 비결정질로 남아 있는 성장층(incubation layer)이 얇아졌다. 이 결과는 nc-Si를 증착할 때 사용한 수소($H_2$) 플라즈마와 헬륨(He) 플라즈마의 효과로 설명할 수 있다. 실험을 통해 ICP-CVD로 증착한 nc-Si 박막을 박막 전계효과트랜지스터 (TFT)에서 우수한 특성의 전자수송층(active layer)으로 사용할 수 있는 것을 확인하였다.

  • PDF

Electrical Properties of Boron and Phosphorus Doped μc-Si:H Films using Inductively Coupled Plasma Chemical Vapor Deposition Method for Solar Cell Applications

  • Jeong, Chae-Hwan;Jeon, Min-Sung;Koichi, Kamisako
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.28-32
    • /
    • 2008
  • Hydrogenated microcrystalline silicon(${\mu}c$-Si:H) films were prepared using inductively coupled plasma chemical vapor deposition(ICP-CVD) method, electrical and optical properties of these films were studied as a function of silane concentration. And then, effect of $PH_3\;and\;B_2H_6$ addition on their electrical properties was also investigated for solar cell application. Characterization of these films from X-ray diffraction revealed that the conductive film exists in microcrystalline phase embedded in an amorphous network. At $PH_3/SiH_4$ gas ratio of $0.9{\times}10^{-3}$, dark conductivity has a maximum value of ${\sim}18.5S/cm$ and optical bandgap also a maximum value of ${\sim}2.39eV$. Boron-doped ${\mu}c$-Si:H films, satisfied with p-layer of solar cell, could be obtained at ${\sim}10^{-2}\;of\;B_2H_6/SiH_4$.