The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value ($0.65{\pm}0.05$ nm) for lithiated silicon nanowire and a higher value ($1.72{\pm}0.16$ nm) for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value (~15 nN) than that of the Si nanowire substrate (~60 nN) by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The elastic local spring constants obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively smaller value (16.98 N/m) than lithiated silicon nanowire (66.30 N/m) due to the elastically soft amorphous structures. The frictional forces of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.
We have synthesized carbon nanotubes by thermal chemical vapor deposition of $C_2H_2$ on transition metal-coated silicon substrates. Carbon nanotubes are uniformly synthesized on a large area of the plain Si substrates, different from Previously reported porous Si substrates. It is observed that surface modification of transition metals deposited on substrates by either etching with dipping in a HF solution and/or $NH_3$ pretreatment is a crucial step for the nanotube growth prior to the reaction of $C_2H_2$ gas. We will demonstrate that the diameters of carbon naotubes can be controlled by applying the different transition metals.
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.125.2-125.2
/
2016
Semiconductor nanowires are essential building blocks for various nanotechnologies including energy conversion, optoelectronics, and thermoelectric devices. Bottom-up synthetic approach utilizing metal catalyst and vapor phase precursor molecules (i.e., vapor - liquid - solid (VLS) method) is widely employed to grow semiconductor nanowires. Al has received attention as growth catalyst since it is free from contamination issue of Si nanowire leading to the deterioration of electrical properties. Al-catalyzed Si nanowire growth, however, unlike Au-Si system, has relatively narrow window for stable growth, showing highly tapered sidewall structure at high temperature condition. Although surface chemistry is generally known for its role on the crystal growth, it is still unclear how surface adsorbates such as hydrogen atoms and the nanowire sidewall morphology interrelate in VLS growth. Here, we use real-time in situ infrared spectroscopy to confirm the presence of surface hydrogen atoms chemisorbed on Si nanowire sidewalls grown from Al catalyst and demonstrate they are necessary to prevent unwanted tapering of nanowire. We analyze the surface coverage of hydrogen atoms quantitatively via comparison of Si-H vibration modes measured during growth with those obtained from postgrowth measurement. Our findings suggest that the surface adsorbed hydrogen plays a critical role in preventing nanowire sidewall tapering and provide new insights for the role of surface chemistry in VLS growth.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.19
no.7
/
pp.618-623
/
2006
Hydrogenated Diamond-like carbon (DLC) films were prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas. The wear track on the DLC films was examined after the ball-on disk (BOD) measurement with a Raman mapping method. The BOD measurement of the DLC films was performed for 1 to 3 hours with a 1-hour step time. The sliding traces on the hydrogenated DLC film after the BOD measurement were also observed using an optical microscope. The surface roughness and cross-sectional images of the wear track were obtained using an atomic force microscope (AFM). The novel Raman mapping method effectively shows the graphitization of DLC films of $300{\mu}m\times300{\mu}m$ area according to the sliding time by G-peak positions (intensities) and $I_D/I_G$ ratios.
Selective epitaxial growth(SEG) of silicon were performed at low temperature under an ultraclean environment below $1000^{\circ}C$ using ultraclean $Si_2H_6$ and $H_2$ gases ambient in low pressure chemical vapor deposition(LPCVD). As a result of ultraclean processing, epitaxial Si layers with good quality were obtained for uniform and SEG wafer at temperatures range 600~$710^{\circ}C$ and an incubation period of Si deposition only on $SiO_2$ was found. Low-temperature Si selectivity deposition condition and epitaxy on Si were achieved without addition of HCl. The epitaxial layer was found to be thicker than the poly layer deposited over the oxide. Incubation period prolonged for 20~30 sec can be obtained by $O_2$addition. The surface morphologies & cross sections of the deposited films were observed with SEM, The structure of the Si films was evaluated XRD.
Kim, Ik-Whan;Kim, Jun-Gyu;Lee, Hwan-Sup;Choi, Doo-Jin
Journal of the Korean Ceramic Society
/
v.45
no.2
/
pp.132-137
/
2008
The main purpose of this study is enhancing the filtering efficiency, performance and durability of filter by growing SiC whiskers on cordierite honeycomb substrate. The experiment was performed by Chemical Vapor Infiltration (CVI) in order to control pore morphology of substrate. Increasing the mechanical strength of porous substrate is one of important issues. The formation of "networking structure" in the pore of porous substrate increased mechanical strength. The high pressure gas injection to the specimen showed that a little of whiskers were separated from substrate but additional film coating enhanced the stability of whisker at high pressure gas injection. Particle trap test was performed. More nano-particle was trapped by whisker growth at the pore of substrate. Therefore it is expected that the porous cordierite which deposited the SiC whisker will be the promising material for the application as filter trapping the nano-particles.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2003.07b
/
pp.1030-1033
/
2003
This paper presents the deposition characterization of polycrystalline silicon films by the HWCVD(Hot-wire Chemical Vapor Deposition) method at low substrate($300^{\circ}C$). The filament temperature, pressure and $SiH_4$ concentration were determined to be a critical parameter for the deposition of poly-Si films. Series A was deposited under the conditions of $1380^{\circ}C$(Tf), 100 mTorr and $2{\sim}10%\{SiH_4/(SiH_4+H_2)\}$ for 60 min. Series B was deposited under the conditions of $1400{\sim}1450^{\circ}C$ (Tf), 30 mTorr and $2{\sim}12%$ for 60 min. The physical characteristics were measured by Raman and FTIR spectroscopy, dark and photoconductivity measurements under AM1.5 illumination.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.15
no.2
/
pp.57-60
/
2005
Semiconductor carbon nanotube was grown on oxided silicon wafer with atmosphere pressure chemical vapor deposition (APCVD) method and investigated the electrical property after thermal oxidation at $300^{\circ}C$ in air. The electrical property was measured at room temperature in air after thermal oxidation at $300^{\circ}C$ for various times in air. Semiconductor carbon nanotube was steadily changed to metallic carbon nanotube as increasing of thermal oxidation times at $300^{\circ}C$ in air. Some removed area of carbon nanotube surface was shown with transmission electron microscopy (TEM) after thermal oxidation for 6 hours at $300^{\circ}C$ in air.
Park, Snag-Geun;Han, Sang-Myeon;Shin, Kwang-Sub;Han, Min-Koo
Proceedings of the KIEE Conference
/
2005.11a
/
pp.12-14
/
2005
Inductively Coupled Plasma Chemical Vapor Deposition(ICP-CVD)를 이용하여 공정온도 $150^{\circ}C$에서 Nanocrystalline silicon (nc-Si) 박막을 증착하였다. 실험에서 헬륨(He)가스, 수소($H_2$)가스 그리고 헬륨(He)과 수소($H_2$)의 혼합가스로 희석한 사일렌($SiH_4$)을 반응가스로 이용하였다. 이 혼합가스는 3sccm의 사일렌($SiH_4$)에 헬륨(He)과 수소($H_2$)의 주입율을 20sccm에서부터 60sccm까지 변화시켜 조건을 달리하여 사용했다. 증착한 Nc-Si 박막을 X-ray diffraction (XRD)으로 분석하여 각각의 조건에 대한 Nc-Si 박막의 속성을 연구하였다. 헬륨(He) 또는 수소($H_2$) 혼합가스의 주입율이 커지면서 <111>과 <222>의 최고점(peak)이 더 높아졌으며 결정화 되지 않고 비결정질로 남아 있는 성장층(incubation layer)이 얇아졌다. 이 결과는 nc-Si를 증착할 때 사용한 수소($H_2$) 플라즈마와 헬륨(He) 플라즈마의 효과로 설명할 수 있다. 실험을 통해 ICP-CVD로 증착한 nc-Si 박막을 박막 전계효과트랜지스터 (TFT)에서 우수한 특성의 전자수송층(active layer)으로 사용할 수 있는 것을 확인하였다.
Transactions on Electrical and Electronic Materials
/
v.9
no.1
/
pp.28-32
/
2008
Hydrogenated microcrystalline silicon(${\mu}c$-Si:H) films were prepared using inductively coupled plasma chemical vapor deposition(ICP-CVD) method, electrical and optical properties of these films were studied as a function of silane concentration. And then, effect of $PH_3\;and\;B_2H_6$ addition on their electrical properties was also investigated for solar cell application. Characterization of these films from X-ray diffraction revealed that the conductive film exists in microcrystalline phase embedded in an amorphous network. At $PH_3/SiH_4$ gas ratio of $0.9{\times}10^{-3}$, dark conductivity has a maximum value of ${\sim}18.5S/cm$ and optical bandgap also a maximum value of ${\sim}2.39eV$. Boron-doped ${\mu}c$-Si:H films, satisfied with p-layer of solar cell, could be obtained at ${\sim}10^{-2}\;of\;B_2H_6/SiH_4$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.