Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.6.395

Nanomechanical Properties of Lithiated Silicon Nanowires Probed with Atomic Force Microscopy  

Lee, Hyun-Soo (Graduate School of EEWS (WCU) and Nanocentury KI, KAIST)
Shin, Weon-Ho (Graduate School of EEWS (WCU) and Nanocentury KI, KAIST)
Kwon, Sang-Ku (Graduate School of EEWS (WCU) and Nanocentury KI, KAIST)
Choi, Jang-Wook (Graduate School of EEWS (WCU) and Nanocentury KI, KAIST)
Park, Jeong-Young (Graduate School of EEWS (WCU) and Nanocentury KI, KAIST)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.6, 2011 , pp. 395-402 More about this Journal
Abstract
The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value ($0.65{\pm}0.05$ nm) for lithiated silicon nanowire and a higher value ($1.72{\pm}0.16$ nm) for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value (~15 nN) than that of the Si nanowire substrate (~60 nN) by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The elastic local spring constants obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively smaller value (16.98 N/m) than lithiated silicon nanowire (66.30 N/m) due to the elastically soft amorphous structures. The frictional forces of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.
Keywords
Fully lithiated silicon nanowire; Atomic force microscopy; Surface roughness; Adhesion force; Frictional force;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Capella, P. Baschieri, C. Frediani, P. Miccoli, and C. Ascoli, IEEE Eng. Med. Biol. Mag. 16, 58 (1997).   DOI
2 B. Cappella and G. Dietler, Surf. Science Reports 34, 1 (1999).   DOI
3 M. Gotzinger and W. Peukert, Langmuir 20, 5298 (2004).   DOI
4 D. Tabor, J. Colloid Interface Sci. 58, 2 (1977).   DOI
5 H. Lee, H. Yong, K. B. Kim, Y. Seo, H. Yun, and S. Lee, J. Appl. Phy. 108, 014302 (2010).   DOI
6 A. Schallamac, Proc. Phys. Soc. B 65, 393B (1952).
7 E. Gnecco, R. Bennewitz, T. Gyalog, and E. Meyer, J. Phys. Condens. Matter 13, R619 (2001).   DOI
8 Y. F. Gao and M. Zhou, J. Appl. Phy. 109, 014310 (2011)   DOI   ScienceOn
9 J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Y. Fan, L. A. Qi, A. Kushima, and J. Li, Science 330, 1515 (2011).
10 L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, and J. R. Dahn, J. Electrochem. Soc. 150, A1457 (2003).   DOI   ScienceOn
11 B. Laik, D. Ung, A. Caillard, C. S. Cojocaru, D. Pribat, and J. P. Pereira-Ramos, J. Solid State Electrochem. 14, 1835 (2010).   DOI
12 C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins, and Y. Cui, J. Power Sources 189, 34 (2009).   DOI
13 T. K. Bhandakkar and H. J. Gao, Int. J. Solids Structures 47, 1424 (2010).   DOI   ScienceOn
14 J. Christensen and J. Newman, J. Solid State Electrochem. 10, 293 (2006).   DOI
15 X. H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L. Q. Zhang, Y. Liu, A. Kushima, W. T. Liang, J. W. Wang, J. H. Cho, E. Epstein, S. A. Dayeh, S. T. Picraux, T. Zhu, J. Li, J. P. Sullivan, J. Cumings, C. Wang, S. X. Mao, Z. Z. Ye, S. Zhang, and J. Y. Huang, Nano Lett. 11, 3312 (2011)   DOI   ScienceOn
16 K. J. Zhao, M. Pharr, J. J. Vlassak, and Z. G. Suo, J. Appl. Phy. 109, 016110 (2011).   DOI
17 X. C. Zhang, W. Shyy, and A. M. Sastry, J. Electrochem. Soc. 154, A910 (2007).   DOI
18 Y. T. Cheng and M. W. Verbrugge, J. Power Sources 190, 453 (2009).   DOI   ScienceOn
19 V. B. Shenoy, P. Johari, and Y. Qi, J. Power Sources 195, 6825 (2010).   DOI   ScienceOn
20 B. Laik, L. Eude, J. P. Pereira-Ramos, C. S. Cojocaru, D. Pribat, and E. Rouviere, Electrochim. Acta 53, 5528 (2008).   DOI
21 J. Y. Park, Langmuir 27, 2509 (2011).   DOI
22 L. F. Cui, R. Ruffo, C. K. Chan, H. L. Peng, and Y. Cui, Nano Lett. 9, 491 (2009).   DOI   ScienceOn
23 J. P. Maranchi, A. F. Hepp, and P. N. Kumta, Electrochem. Solid-State Lett. 6, A198 (2003).   DOI
24 B. Kang and G. Ceder, Nature 458, 190 (2009).   DOI
25 A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, and W. Van Schalkwijk, Nature Mater. 4, 366 (2005).   DOI
26 J. Vetter, P. Novak, M. R. Wagner, C. Veit, K. C. Moller, J. O. Besenhard, M. Winter, M. Wohlfahrt- Mehrens, C. Vogler, and A. Hammouche, J. Power Sources 147, 269 (2005).   DOI   ScienceOn
27 W. Wang and P. N. Kumta, J. Power Sources 172, 650 (2007).   DOI   ScienceOn
28 M. N. Obrovac and L. J. Krause, J. Electrochem. Soc. 154, A103 (2007).   DOI
29 L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Electrochem. Solid-State Lett. 4, A137 (2001).   DOI
30 J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh, Electrochem. Solid-State Lett. 7, A306 (2004).   DOI
31 C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).   DOI