DOI QR코드

DOI QR Code

Nanomechanical Properties of Lithiated Silicon Nanowires Probed with Atomic Force Microscopy

원자힘 현미경으로 측정된 리튬화 실리콘 나노선의 나노기계적 성질

  • Lee, Hyun-Soo (Graduate School of EEWS (WCU) and Nanocentury KI, KAIST) ;
  • Shin, Weon-Ho (Graduate School of EEWS (WCU) and Nanocentury KI, KAIST) ;
  • Kwon, Sang-Ku (Graduate School of EEWS (WCU) and Nanocentury KI, KAIST) ;
  • Choi, Jang-Wook (Graduate School of EEWS (WCU) and Nanocentury KI, KAIST) ;
  • Park, Jeong-Young (Graduate School of EEWS (WCU) and Nanocentury KI, KAIST)
  • 이현수 (한국과학기술원(KAIST) EEWS대학원) ;
  • 신원호 (한국과학기술원(KAIST) EEWS대학원) ;
  • 권상구 (한국과학기술원(KAIST) EEWS대학원) ;
  • 최장욱 (한국과학기술원(KAIST) EEWS대학원) ;
  • 박정영 (한국과학기술원(KAIST) EEWS대학원)
  • Received : 2011.08.11
  • Accepted : 2011.09.29
  • Published : 2011.11.30

Abstract

The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value ($0.65{\pm}0.05$ nm) for lithiated silicon nanowire and a higher value ($1.72{\pm}0.16$ nm) for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value (~15 nN) than that of the Si nanowire substrate (~60 nN) by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The elastic local spring constants obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively smaller value (16.98 N/m) than lithiated silicon nanowire (66.30 N/m) due to the elastically soft amorphous structures. The frictional forces of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.

원자힘 현미경을 이용하여 실리콘 기판 위에 증착된 실리콘 나노선과 리튬화된 실리콘 나노선의 나노기계적 성질을 연구했다. 금 촉매를 사용하여 스테인리스 기판 위에서 증기-액체-고체 과정을 통해 실리콘 나노선을 합성하였다. 완전히 리튬화된 실리콘 나노선을 얻기 위해서 전기 화학적 방법을 사용했고, 이를 실리콘 기판 위에 증착하였다. 접촉모드 원자힘 현미경으로 측정된 표면 거칠기는 실리콘 나노선에서 $0.65{\pm}0.05$ nm에 비해 리튬화된 실리콘 나노선에서 $1.72{\pm}0.16$ nm으로 더 큰 값을 보여주었다. 탐침과 표면 사이의 접착력에서 리튬화의 영향을 조사하기 위해 힘 분광기법을 사용했다. 실리콘 나노선의 접착력이 실리콘 기판과 ~60 nN으로 흡사한 반면에, 리튬화된 실리콘 나노선은 ~15 nN으로 더 작은 값을 나타냈다. 또한, 탄성적으로 부드러운 무정형 구조 때문에 국부적 탄성 스프링 상수도 실리콘 나노선 66.30 N/m보다 완전히 리튬화된 실리콘 나노선이 16.98 N/m으로 상대적으로 작았다. 실리콘 나노선과 완전히 리튬화된 실리콘 나노선에서 탐침과 표면 사이에 마찰력의 수직항력 의존성과 스캔 속도 의존성을 조사하기 위하여 각 0.5~4.0 Hz와 0.01~200 nN으로 측정했다. 본 연구에서 실리콘과 리튬화된 실리콘의 기계적 성질에 관련된 접착력과 마찰력의 경향성이 보여졌고 이러한 방향의 연구는 충-방전 동안 리튬화된 나노수준의 영역의 화학적 맵핑에 응용성을 보여준다.

Keywords

References

  1. B. Kang and G. Ceder, Nature 458, 190 (2009). https://doi.org/10.1038/nature07853
  2. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, and W. Van Schalkwijk, Nature Mater. 4, 366 (2005). https://doi.org/10.1038/nmat1368
  3. J. Vetter, P. Novak, M. R. Wagner, C. Veit, K. C. Moller, J. O. Besenhard, M. Winter, M. Wohlfahrt- Mehrens, C. Vogler, and A. Hammouche, J. Power Sources 147, 269 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.006
  4. J. P. Maranchi, A. F. Hepp, and P. N. Kumta, Electrochem. Solid-State Lett. 6, A198 (2003). https://doi.org/10.1149/1.1596918
  5. W. Wang and P. N. Kumta, J. Power Sources 172, 650 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.025
  6. M. N. Obrovac and L. J. Krause, J. Electrochem. Soc. 154, A103 (2007). https://doi.org/10.1149/1.2402112
  7. L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Electrochem. Solid-State Lett. 4, A137 (2001). https://doi.org/10.1149/1.1388178
  8. J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh, Electrochem. Solid-State Lett. 7, A306 (2004). https://doi.org/10.1149/1.1792242
  9. C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008). https://doi.org/10.1038/nnano.2007.411
  10. J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Y. Fan, L. A. Qi, A. Kushima, and J. Li, Science 330, 1515 (2011).
  11. L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, and J. R. Dahn, J. Electrochem. Soc. 150, A1457 (2003). https://doi.org/10.1149/1.1613668
  12. B. Laik, D. Ung, A. Caillard, C. S. Cojocaru, D. Pribat, and J. P. Pereira-Ramos, J. Solid State Electrochem. 14, 1835 (2010). https://doi.org/10.1007/s10008-010-1045-5
  13. C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins, and Y. Cui, J. Power Sources 189, 34 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.047
  14. T. K. Bhandakkar and H. J. Gao, Int. J. Solids Structures 47, 1424 (2010). https://doi.org/10.1016/j.ijsolstr.2010.02.001
  15. X. H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L. Q. Zhang, Y. Liu, A. Kushima, W. T. Liang, J. W. Wang, J. H. Cho, E. Epstein, S. A. Dayeh, S. T. Picraux, T. Zhu, J. Li, J. P. Sullivan, J. Cumings, C. Wang, S. X. Mao, Z. Z. Ye, S. Zhang, and J. Y. Huang, Nano Lett. 11, 3312 (2011) https://doi.org/10.1021/nl201684d
  16. K. J. Zhao, M. Pharr, J. J. Vlassak, and Z. G. Suo, J. Appl. Phy. 109, 016110 (2011). https://doi.org/10.1063/1.3525990
  17. X. C. Zhang, W. Shyy, and A. M. Sastry, J. Electrochem. Soc. 154, A910 (2007). https://doi.org/10.1149/1.2759840
  18. J. Christensen and J. Newman, J. Solid State Electrochem. 10, 293 (2006). https://doi.org/10.1007/s10008-006-0095-1
  19. Y. T. Cheng and M. W. Verbrugge, J. Power Sources 190, 453 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.021
  20. V. B. Shenoy, P. Johari, and Y. Qi, J. Power Sources 195, 6825 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.044
  21. B. Laik, L. Eude, J. P. Pereira-Ramos, C. S. Cojocaru, D. Pribat, and E. Rouviere, Electrochim. Acta 53, 5528 (2008). https://doi.org/10.1016/j.electacta.2008.02.114
  22. J. Y. Park, Langmuir 27, 2509 (2011). https://doi.org/10.1021/la104353f
  23. L. F. Cui, R. Ruffo, C. K. Chan, H. L. Peng, and Y. Cui, Nano Lett. 9, 491 (2009). https://doi.org/10.1021/nl8036323
  24. B. Capella, P. Baschieri, C. Frediani, P. Miccoli, and C. Ascoli, IEEE Eng. Med. Biol. Mag. 16, 58 (1997). https://doi.org/10.1109/51.582177
  25. B. Cappella and G. Dietler, Surf. Science Reports 34, 1 (1999). https://doi.org/10.1016/S0167-5729(99)00003-5
  26. M. Gotzinger and W. Peukert, Langmuir 20, 5298 (2004). https://doi.org/10.1021/la049914f
  27. D. Tabor, J. Colloid Interface Sci. 58, 2 (1977). https://doi.org/10.1016/0021-9797(77)90366-6
  28. H. Lee, H. Yong, K. B. Kim, Y. Seo, H. Yun, and S. Lee, J. Appl. Phy. 108, 014302 (2010). https://doi.org/10.1063/1.3456007
  29. A. Schallamac, Proc. Phys. Soc. B 65, 393B (1952).
  30. E. Gnecco, R. Bennewitz, T. Gyalog, and E. Meyer, J. Phys. Condens. Matter 13, R619 (2001). https://doi.org/10.1088/0953-8984/13/31/202
  31. Y. F. Gao and M. Zhou, J. Appl. Phy. 109, 014310 (2011) https://doi.org/10.1063/1.3530738