• 제목/요약/키워드: SiC power device

검색결과 147건 처리시간 0.03초

Electric Property Analysis of SiC Semiconductor Wafer for Power Device Application

  • 김정곤;안준호;서정두;김정규;견명옥;이원재;김일수;신병철;구갑렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.207-207
    • /
    • 2006
  • We investigated the effects of hydrogen addition to the growth process of SiC single crystal using sublimation physical vapor transport(PVT) techniques. Hydrogen was periodically added to an inert gas for the growth ambient during the SiC bulk growth Grown 2"-SiC single crystals were proven to be the polytype of 6H-SiC and carrier concentration levels of about $10^{17}/cm^3$ was determined from Hall measurements. As compared to the characteristics of SiC crystal grown without using hydrogen addition, the SiC crystal without definitely exhibited lower carrier concentration and lower microplpe density as well as reduced growth rate.

  • PDF

N-epi 영역과 Channel 폭에 따른 4H-SiC 고전력 VJFET 설계 (4H-SiC High Power VJFET with modulation of n-epi layer and channel dimension)

  • 안정준;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.350-350
    • /
    • 2010
  • Silicon carbide (SiC), one of the well known wide band gap semiconductors, shows high thermal conductivities, chemical inertness and breakdown energies. The design of normally-off 4H-SiC VJFETs [1] has been reported and 4H-SiC VJFETs with different lateral JFET channel opening dimensions have been studied [2]. In this work, 4H-SiC based VJFETs has been designed using the device simulator (ATLAS, Silvaco Data System, Inc). We varied the n-epi layer thickness (from $6\;{\mu}m$ to $10\;{\mu}m$) and the channel width (from $0.9\;{\mu}m$ to $1.2\;{\mu}m$), and investigated the static characteristics as blocking voltages, threshold voltages, on-resistances. We have shown that silicon carbide JFET structures of highly intensified blocking voltages with optimized figures of merit can thus be achieved by adjusting the epi layer thickness and channel width.

  • PDF

Electrical Characteristics of SiC Lateral P-i-N Diodes Fabricated on SiC Semi-Insulating Substrate

  • Kim, Hyoung Woo;Seok, Ogyun;Moon, Jeong Hyun;Bahng, Wook;Jo, Jungyol
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.387-392
    • /
    • 2018
  • Static characteristics of SiC (silicon carbide) lateral p-i-n diodes implemented on semi-insulating substrate without an epitaxial layer are inVestigated. On-axis SiC HPSI (high purity semi-insulating) and VDSI (Vanadium doped semi-insulating) substrates are used to fabricate the lateral p-i-n diode. The space between anode and cathode ($L_{AC}$) is Varied from 5 to $20{\mu}m$ to inVestigate the effect of intrinsic-region length on static characteristics. Maximum breakdown Voltages of HPSI and VDSI are 1117 and 841 V at $L_{AC}=20{\mu}m$, respectiVely. Due to the doped Vanadium ions in VDSI substrate, diffusion length of carriers in the VDSI substrate is less than that of the HPSI substrate. A forward Voltage drop of the diode implemented on VDSI substrate is 12 V at the forward current of $1{\mu}A$, which is higher than 2.5 V of the diode implemented on HPSI substrate.

고온 동작용 SiC CMOS 소자/공정 및 집적회로 기술동향 (Technology Trend of SiC CMOS Device/Process and Integrated Circuit for Extreme High-Temperature Applications)

  • 원종일;정동윤;조두형;장현규;박건식;김상기;박종문
    • 전자통신동향분석
    • /
    • 제33권6호
    • /
    • pp.1-11
    • /
    • 2018
  • Several industrial applications such as space exploration, aerospace, automotive, the downhole oil and gas industry, and geothermal power plants require specific electronic systems under extremely high temperatures. For the majority of such applications, silicon-based technologies (bulk silicon, silicon-on-insulator) are limited by their maximum operating temperature. Silicon carbide (SiC) has been recognized as one of the prime candidates for providing the desired semiconductor in extremely high-temperature applications. In addition, it has become particularly interesting owing to a Si-compatible process technology for dedicated devices and integrated circuits. This paper briefly introduces a variety of SiC-based integrated circuits for use under extremely high temperatures and covers the technology trend of SiC CMOS devices and processes including the useful implementation of SiC ICs.

Use of 1.7 kV and 3.3 kV SiC Diodes in Si-IGBT/ SiC Hybrid Technology

  • Sharma, Y.K.;Coulbeck, L.;Mumby-Croft, P.;Wang, Y.;Deviny, I.
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1356-1361
    • /
    • 2018
  • Replacing conventional Si diodes with SiC diodes in Si insulated gate bipolar transistor (IGBT) modules is advantageous as it can reduce power losses significantly. Also, the fast switching nature of the SiC diode will allow Si IGBTs to operate at their full high-switching-speed potential, which at present conventional Si diodes cannot do. In this work, the electrical test results for Si-IGBT/4HSiC-Schottky hybrid substrates (hybrid SiC substrates) are presented. These substrates are built for two voltage ratings, 1.7 kV and 3.3 kV. Comparisons of the 1.7 kV and the 3.3 kV Si-IGBT/Si-diode substrates (Si substrates) at room temperature ($20^{\circ}C$, RT) and high temperature ($H125^{\circ}C$, HT) have shown that the switching losses in hybrid SiC substrates are miniscule as compared to those in Si substrates but necessary steps are required to mitigate the ringing observed in the current waveforms. Also, the effect of design variations on the electrical performance of 1.7 kV, 50 A diodes is reported here. These variations are made in the active and termination regions of the device.

4H-SiC와 산화막 계면에 대한 혼합된 일산화질소 가스를 이용한 산화 후속 열처리 효과 (Effect of High-Temperature Post-Oxidation Annealing in Diluted Nitric Oxide Gas on the SiO2/4H-SiC Interface)

  • 김인규;문정현
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.101-105
    • /
    • 2024
  • 4H-SiC power metal-oxide-semiconductor field effect transistors (MOSFETs) have been developed to achieve lower specific-on-resistance (Ron,sp), and the gate oxides have been thermally grown. The poor channel mobility resulting from the high interface trap density (Dit) at the SiO2/4H-SiC interface significantly affects the higher switching loss of the power device. Therefore, the development of novel fabrication processes to enhance the quality of the SiO2/4H-SiC interface is required. In this paper, NO post-oxidation annealing (POA) by using the conditions of N2 diluted NO at a high temperature (1,300℃) is proposed to reduce the high interface trap density resulting from thermal oxidation. The NO POA is carried out in various NO ambient (0, 10, 50, and 100% NO mixed with 100, 90, 50, and 0% of high purity N2 gas to achieve the optimized condition while maintaining a high temperature (1,300℃). To confirm the optimized condition of the NO POA, measuring capacitance-voltage (C-V) and current-voltage (I-V), and time-of-flight secondary-ion mass spectrometry (ToF-SIMS) are employed. It is confirmed that the POA condition of 50% NO at 1,300℃ facilitates the equilibrium state of both the oxidation and nitridation at the SiO2/4H-SiC interface, thereby reducing the Dit.

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices

  • Castrucci, Paola
    • Advances in nano research
    • /
    • 제2권1호
    • /
    • pp.23-56
    • /
    • 2014
  • The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.

Scanning Kelvin Probe Microscopy를 이용한 SiC 소자의 분석 (Scanning Kelvin Probe Microscopy analysis of silicon carbide device structures)

  • 조영득;하재근;고중혁;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.132-132
    • /
    • 2008
  • Silicon carbide (SiC) is an attractive material for high-power, high-temperature, and high-frequency applications. So far, atomic force microscopy (AFM) has been extensively used to study the surface charges, dielectric constants and electrical potential distribution as well as topography in silicon-based device structures, whereas it has rarely been applied to SiC-based structures. In this work, the surface potential and topography distributions SiC with different doping levels were measured at a nanometer-scale resolution using a scanning kelvin probe force microscopy (SKPM) with a non-contact mode AFM. The measured results were calibrated using a Pt-coated tip and a metal defined electrical contacts of Au onto SiC. It is assumed that the atomically resolved surface potential difference does not originate from the intrinsic work function of the materials but reflects the local electron density on the surface. It was found that the work function of the Au deposited on SiC surface was higher than that of original SiC surface. The dependence of the surface potential on the doping levels in SiC, as well as the variation of surface potential with respect to the schottky barrier height has been investigated. The results confirm the concept of the work function and the barrier heights of metal/SiC structures.

  • PDF

4H-SiC PiN 다이오드의 깊은 준위 결함에 따른 전기적 특성 분석 (Analysis of Electrical Characteristics due to Deep Level Defects in 4H-SiC PiN Diodes)

  • 이태희;박세림;김예진;박승현;김일룡;김민규;임병철;구상모
    • 한국재료학회지
    • /
    • 제34권2호
    • /
    • pp.111-115
    • /
    • 2024
  • Silicon carbide (SiC) has emerged as a promising material for next-generation power semiconductor materials, due to its high thermal conductivity and high critical electric field (~3 MV/cm) with a wide bandgap of 3.3 eV. This permits SiC devices to operate at lower on-resistance and higher breakdown voltage. However, to improve device performance, advanced research is still needed to reduce point defects in the SiC epitaxial layer. This work investigated the electrical characteristics and defect properties using DLTS analysis. Four deep level defects generated by the implantation process and during epitaxial layer growth were detected. Trap parameters such as energy level, capture-cross section, trap density were obtained from an Arrhenius plot. To investigate the impact of defects on the device, a 2D TCAD simulation was conducted using the same device structure, and the extracted defect parameters were added to confirm electrical characteristics. The degradation of device performance such as an increase in on-resistance by adding trap parameters was confirmed.

4H-SiC MOSFET기반 ESD보호회로에 관한 연구 (A study on ESD Protection circuit based on 4H-SiC MOSFET)

  • 서정주;도경일;서정윤;권상욱;구용서
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1202-1205
    • /
    • 2018
  • 본 논문에서는 4H-SiC물질 기반으로 제작된 ggNMOS를 제안하고 전기적 특성을 분석하였다. 4H-SiC는 Wide Band-gap 물질로 Si 물질 보다 면적대비 특성과 고전압 특성이 뛰어나 전력반도체 분야에 주목받고 있다. 제안된 소자는 높은 감내 특성과 Strong snapback 특성을 가진다. 공정은 SiC 공정으로 이루어 졌으며 TLP 측정 장비를 통해 전기적 특성을 분석하였다.