Browse > Article
http://dx.doi.org/10.12989/anr.2014.2.1.023

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices  

Castrucci, Paola (Department of Physics, University of Roma Tor Vergata)
Publication Information
Advances in nano research / v.2, no.1, 2014 , pp. 23-56 More about this Journal
Abstract
The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.
Keywords
carbon nanotubes; hybrid carbon nanotube/Si heterojunctions; solar cells; photovoltaics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou, C., Kong, J., Yenilmez, E. and Dai, H. (2000), "Modulated chemical doping of individual carbon nanotubes", Science, 290, 1552-1555.   DOI
2 Zhou, H., Colli, A., Ahnood, A., Yang, Y., Rupesinghe, N., Butler, T., Haneef, I., Hiralal, P. and Nathan, A., Amaratunga, G.A.J. (2009), "Arrays of parallel connected coaxial multiwall-carbon-nanotube-amorphous-silicon solar cells", Adv. Mater., 21, 3919-3923.   DOI
3 Zhou, W., Vavro, J., Nemes, N.M., Fischer, J.E., Borondics, F., Kamaras, K. and Tanner, D.B. (2005), "Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes", Phys. Rev. B, 71, 205423.   DOI
4 Akai, Y. and Saito, S. (2005), "Electronic structure, energetics and geometric structure of carbon nanotubes: A density-functional study", Physica E, 29, 555-559   DOI
5 Balasubramanian, K., Fan, Y., Burghard, M., Kern, K., Friedrich, M., Wannek, U. and Mews, A. (2004), "Photoelectronic transport imaging of individual semiconducting carbon nanotubes", Appl. Phys. Lett., 84, 2400-2402.   DOI
6 American Census bureau (2012), The 2012 Statistical abstract, World Primary Energy Consumption by Region and Type.
7 Anderson, R.L. (1962), "Experiments on Ge-GaAs heterojunctions", Solid State Electron., 5, 341-344.   DOI   ScienceOn
8 Barazzouk, S., Hotchandani, S., Vinodgopal, K. and Kamat, P. V. (2004) "Single-wall carbon nanotube films for photocurrent generation. a prompt response to visible-light irradiation", J. Phys. Chem. B, 108, 17015-17018.   DOI   ScienceOn
9 Benham, A., Johnson, J. L., Choi, Y., Ertosun, M. G., Okyay, A. K., Kapur, P., Saraswat, K. C. and Ural, A. (2008), "Experimental characterization of single-walled carbon nanotube film-Si Schottky contacts using metal-semiconductor-metal structures", Appl. Phys. Lett., 92, 243116.   DOI   ScienceOn
10 Benham, A., Radhakrishna, N. A., Wu, Z. and Ural, A. (2010), "Electronic properties of metal-semiconductor and metal-oxide semiconductor structures composed of carbon nanotube film on silicon", Appl. Phys. Lett., 97, 233105.   DOI
11 Card, H. C. (1977), "Photovoltaic properties of MIS-Schottky barriers", Solid State Electron., 20, 971-976.   DOI
12 Castrucci, P., Scarselli, M., De Crescenzi, M., El Khakani, M.A., Rosei, F., Braidy, N. and Yi, J.H. (2004), "Effect of coiling on the electronic properties along single-wall carbon nanotubes" Appl. Phys. Lett., 85, 3857.   DOI
13 Chen, L., Zhang, S., Changm L., Zeng, L., Yu, X., Zhao, J., Zhao, S., Xu, C. (2013), "Photovoltaic conversion enhancement of single wall carbon-Si heterojunction solar cell decorated with Ag nanoparticles", Electrochem. Acta, 93, 293-300.   DOI
14 Castrucci, P., Tombolini, F., Scarselli, M., Speiser, E., Del Gobbo, S., Richter, W., De Crescenzi, M., Diociaiuti, M., Gatto E. and Venanzi, M. (2006), "Large photocurrent generation in multiwall carbon nanotubes", Appl. Phys. Lett., 89, 253107.   DOI
15 Castrucci, P., Scilletta, C., Del Gobbo, S., Scarselli, M., Camilli, L., Simeoni, M., Delley, B., Continenza, A. and De Crescenzi, M. (2011), "Light harvesting with multiwall carbon nanotube/silicon heterojunctions", Nanotechnology, 22, 115701.   DOI
16 Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C. and Haddon, R.C. (1998), "Solution properties of single-walled carbon nanotubes", Science, 282, 95-98.   DOI   ScienceOn
17 Collins, P.G., Bradley, K., Ishigami, M. and Zettl, A. (2000), "Extreme oxygen sensitivity of electronic properties of carbon nanotubes", Science, 287, 1801-1804.   DOI   ScienceOn
18 Del Gobbo, S. Castrucci, P., Fedele, S., Riele, L., Convertino, A., Morbidoni, M., De Nicola, F., Scarselli, M., Camilli, L. and De Crescenzi, M. (2013), "Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells", J. Mater. Chem. C, 1, 6752-6758.   DOI
19 Cowley, A.M. and Sze, S. M. (1965), "Surface states and barrier height of metal-semiconductor systems", J. Appl. Phys., 36, 3212-3220.   DOI
20 Del Gobbo, S., Castrucci, P., Scarselli, M., Camilli, L., De Crescenzi, M., Mariucci, L., Valletta, A., Minotti, A. and Fortunato, G. (2011), "Carbon nanotube semitransparent electrodes for amorphous silicon based photovoltaic devices ", Appl. Phys. Lett., 98, 183113.   DOI
21 Di, J., Yong, Z., Zheng, X., Sun, B. and Li, B. (2013), "Aligned carbon nanotubes for high efficiency Schottky solar cells", Small, 9, 1367-1372.   DOI
22 Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L. and Goldberg, H.A. (1988), "Graphite fibers and filaments", Springer Ser. Mater. Sci., 5, Springer, Berlin.
23 Dresselhaus, M.S., Dresselhaus, G. and Eklund P. (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego.
24 European Energy Council (2006), Renewable Energy Scenario To 2040: Half Of The Global Energy Supply From Renewables In 2040, European Renewable Energy Council.
25 Fanchini, G., Unalan H. E. and Chhowalla, M. (2006), "Optoelectronic properties of transparent and conducting single-wall carbon nanotube thin films", Appl. Phys. Lett., 88, 191919.   DOI   ScienceOn
26 Fuhrer, M.S., Nygard, J., Shih, L., Forero, M., Yoon, Y.G., Mazzoni, M.S.C., Choi, H.J., Ihm, J., Steven, M., Louie, G., Zettl, A. and McEuen, P.L. (2000), "Crossed nanotube junction", Science, 288, 494-497.   DOI
27 Feng, T., Xie, D., Lin, Y., Zang, Y., Ren, T., Song, R., Zhao, H., Tian, H., Li, X., Zhu, H. and Liu, L. (2011), "Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate", Appl. Phys. Lett., 99, 233505.   DOI
28 Freitag, M., Martin, Y., Misewich, J.A., Martel, R. and Avouris, Ph. (2003), "Photoconductivity of single carbon nanotubes ", Nano Lett., 3, 1067-1071.   DOI
29 Galimberti, G., Ponzoni, S., Cartella, A., Cole, M.T., Hofmann, S., Cepek, C., Ferrini, G. and Pagliara, S. (2013), "Probing the electronic structure of multi-walled carbon nanotubes by transient optical transmittivity", Carbon, 57, 50-58.   DOI
30 Gabor, N.M., Zhong, Z., Bosnick, K., Park, J. and McEuen, P.L. (2009), "Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes", Science, 325, 1367-1371.   DOI
31 Green, M.A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E.D. (2012), "Solar cell efficiency tables (version 39)", Progress in photovoltaics: Research and Applications, 20, 12-20.   DOI   ScienceOn
32 Grosso, G. and Pastori Parravacini, G. (2000), Solid State Physics, Academic Press, San Diego, CA, USA.
33 Haacke, G. (1976), "New figure of merit for transparent conductors", J. Appl. Phys., 47, 4086-4089.   DOI   ScienceOn
34 Hamada, N., Sawada, S. and Oshiyama, A. (1992), "New one-dimensional conductors: graphitic microtubules", Phys. Rev. Lett., 68, 1579-1581.   DOI   ScienceOn
35 Jackson, R., Domercq, B., Jain, R., Kippelen, B. and Graham, S. (2008), "Stability of doped transparent carbon nanotube electrodes", Adv. Funct. Mater., 18, 2548-2554.   DOI
36 Ho, Y.H., Chang, C.P., Shyu, F.L., Chen, R.B., Chen, S.C. and Lin, M.F. (2004), "Electronic and optical properties of double-walled armchair carbon nanotubes ", Carbon, 42, 3159-3167.   DOI
37 Jia, Y., Wei, J., Wang, K., Cao, A., Shu, Q., Gui, X., Zhu, Y., Zhuang, D., Zhang, G., Ma, B., Wang, L., Liu, W., Wang, Z., Luo, J. and Wu, D. (2008), "Nanotube-Silicon heterojunction solar cells", Adv. Mater, 20, 4594-4598.   DOI
38 Hu, L., Hecht, D.S. and Gruner, G. (2004), "Percolation in transparent and conducting carbon nanotube networks", Nano Lett., 4, 2513-2517.   DOI   ScienceOn
39 Jia, Y., Li, P., Wei, J., Cao, A., Wang, K., Li, Co, Zhuang, D., Zhu, H. and Wu, D. (2010), " Carbon nanotube films by filtration for nanotube-silicon heterojunction solar cells", Mater. Research Bull., 45, 1401-1405.   DOI
40 Jia, Y., Li, P., Gui, X., Wei, J., Wang, K., Zhu, H., Wu, D., Zhang, L., Cao, A. and Xu, Y. (2011a), "Encaspulated carbon nanotube-oxide-silicon solar cells with stable efficiency", Appl. Phys. Lett., 98, 133115.   DOI
41 Jia, Y., Cao, A., Bai, X., Li, Z., Zhang, L., Guo, N., Wei, J., Wang, K., Zhu, H., Wu, D. and Ajayan, P. M. (2011b), "Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping", Nano Lett., 11, 1901-1905.   DOI
42 Jia, Y., Cao, A., Kang, F., Li, P., Gui, X., Zhang, L., Shi, E., Wei, J., Wang K., Zhu, H. and Wu, D. (2012), "Strong and reversible modulation of carbon nanotube?silicon heterojunction solar cells by an interfacial oxide layer", Phys. Chem. Chem. Phys., 14, 8391-8396.   DOI
43 Kalita, G., Adhikari, S., Aryal, H.R., Afre, R., Soga, T., Sharon, M., Koichi, W. and Umeno, M. (2009), "Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes", J. Phys. D: Appl. Phys., 42, 115104.   DOI
44 Kaskela, A., Nasibulin, A.G., Timmermans, M.Y., Aitchison, B., Papadimitratos, A., Tian, Y., Zhu, Z., Jiang, H., Brown, D.P., Zakhidov, A. and Kauppinen, E.I. (2010), "Aerosol-synthesized swcnt networks with tunable conductivity and transparency by a dry transfer technique", Nano Lett., 10, 4349-4355.   DOI
45 Jorio, A., Dresselhaus, M.S. and Dresselhaus, G. (2008) Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications, Springer, New York.
46 Jung, Y., Li, X., Rajan, N.K., Taylor, A.D. and Reed, M.A. (2013), "Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells ", Nano Lett., 13, 95-99.   DOI
47 Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y. and Achiba, Y. (1999), "Optical properties of single-wall carbon nanotubes", Synth. Met., 103, 2555-2558.   DOI
48 Kim, P., Odom, T.W., Huang, J.L. and Lieber, C.M. (1999), "Electronic density of states of atomically resolved single-walled carbon nanotubes: van Hove singularities and end states", Phys. Rev. Lett., 82, 1225-1228.   DOI
49 Kwon, Y. and Tomanek, D. (1998), "Electronic and structural properties of multiwall carbon nanotubes", Phys. Rev. B, 58, R16001-R16004.   DOI
50 Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X. and Wu, D. (2010b), "Graphene-on-silicon Schottky junction solar cells", Adv. Mater., 22, 2743-2748.   DOI
51 Li, X., Jung, Y., Sakimoto, K., Goh, T.H., Reed, M.A. and Taylor, A.D. (2013), "Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells", Energy Environ. Sci., 6, 879-887.   DOI
52 Le Borgne, V., Gautier, L.A., Castrucci, P., Del Gobbo, S., De Crescenzi, M. and El Khakani, M.A. (2012), "Enhanced UV photoresponse of KrF-laser-synthesized single-wall carbon-nanotubes/n-silicon hybrid devices", Nanotechnology, 23, 215206.   DOI
53 Lee, J.U. (2005), "Photovoltaic effect in ideal carbon nanotube diodes", Appl. Phys. Lett., 87, 073101   DOI   ScienceOn
54 Li, C., Li, Z., Zhu, H., Wang, K., Wei, J., Li, X., Sun, P., Zhang, H. and Wu, D. (2010a), "Graphene Nano-"patches" on a carbon nanotube network for highly transparent/conductive thin film applications", J. Phys. Chem. C, 114, 14008-14012.   DOI
55 Li, Y., Kodama, S., Kaneko, T. and Hatakeyama, R. (2011), "Harvesting infrared solar energy by semiconducting single-walled carbon nanotubes", Appl. Phys. Expr., 4, 065101.   DOI
56 Li, Z., Kunets, V.P., Saini, V., Xu, Y., Dervishi, E., Salamo, G.J., Biris, A.R. and Biris, A.S. (2009), "Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions", ACS Nano, 3, 1407-1414.   DOI
57 Liang, C.W. and Roth, S. (2008), "Electrical and optical transport of gas/carbon nanotube heterojunctions", Nano Lett., 8, 1809-1812.   DOI
58 Lombardi, I., Hochbaum, A.I., Yang, P.D., Carraro C. and Maboudian, R. (2006), "Synthesis of high density, size-controlled Si nanowire arrays via porous anodic alumina mask", Chem. Mater., 18, 988-991.   DOI   ScienceOn
59 Liu, L., Jayanthi, C.S., Tang, M., Wu, S.Y., Tombler, T.W., Zhou, C., Alexseyev, L., Kong, J. and Dai, H. (2000), "Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an AFM tip: a nanoscale electromechanical switch?", Phys. Rev. Lett., 84, 4950-4953.   DOI
60 Lien, D.H., Hsu, W.K., Zan, H.W., Tai, N.H. and Tsai, C.H. (2006), "Photocurrent amplification at carbon nanotube-metal contacts", Adv. Mater., 18, 98-103.   DOI
61 Liu, X., Pichler, T., Knupfer, M., Golden, M.S., Fink, J., Kataura, H. and Achiba, Y. (2002), "Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotubes from their optical response ", Phys. Rev. B, 66, 045411.   DOI
62 Lu, S. and Panchapakesan, B. (2006), "Photoconductivity in single wall carbon nanotube sheets", Nanotechnology, 17, 1843-1850.   DOI
63 McEuen, P.L. and Park, J.Y. (2004), "Electron transport in single-walled carbon nanotubes", MRS Bull., 29, 272-275.   DOI
64 Merchant, C.A. and Markovi, N. (2008), "Effects of diffusion on photocurrent generation in single-walled carbon nanotube films", Appl. Phys. Lett., 92, 243510.   DOI
65 Merchant, C.A. and Markovi, N. (2009), "The photoresponse of spray-coated and free-standing carbon nanotube films with Schottky contacts", Nanotechnology, 20, 175202.   DOI
66 Mintmire, J.W. and White, C.T. (1995), "Electronic and structural properties of carbon nanotubes ", Carbon, 33, 893-902.   DOI   ScienceOn
67 Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R. and Hebard, A.F. (2012), "High efficiency graphene solar cells by chemical doping", Nano Lett.,12, 2745-2750.   DOI
68 Misewich, J.A., Martel, R., Avouris, Ph., Tsang, J.C., Heinze, S. and Tersoff, J. (2003), "Electrically induced optical emission from a carbon nanotube FET", Science, 300, 783-786.   DOI
69 Michalak, D.J. and Lewis, N.S. (2002), "Use of near-surface channel conductance and differential capacitance versus potential measurements to correlate inversion layer formation with low effective surface recombination velocities at n-Si/liquid contacts", Appl. Phys. Lett., 80, 4458-4460.   DOI
70 Michalak, D.J., Gstrein, F. and Lewis, N.S. (2008), "The role of band bending in affecting the surface recombination velocities for Si(111) in contact with aqueous acidic electrolytes", J. Phys. Chem. C, 112, 5911-5921.   DOI
71 Mohite, A., Chakraborty, S., Gopinath, P., Sumanasekera, G.U. and Alphenaar, B.W. (2005), "Displacement current detection of photoconduction in carbon nanotubes", Appl. Phys. Lett., 86, 061114.   DOI
72 Murakami, Y., Einarsson, E., Edamura, T. and Maruyamaet, S. (2005), "Polarization dependence of the optical absorption of single-walled carbon nanotubes", Phys. Rev. Lett., 94, 087402.   DOI
73 Odom, T.W., Huang, J.L., Kim, P. and Lieber, C.M. (1998), "Atomic structure and electronic properties of single-walled carbon nanotubes ", Nature, 391, 62-64.   DOI   ScienceOn
74 Ong, P.L., Euler, W.B. and Levitsky, I.A. (2010a), "Carbon nanotube-Si diode as a detector of mid-infrared illumination", Appl. Phys. Lett., 96, 033106.   DOI
75 Ponzoni, S., Galimberti, G., Sangaletti, L., Castrucci, P., Del Gobbo, S., Morbidoni, M., Scarselli, M., Pagliara, S. (2013), "Interface-coupled relaxation dynamics in CNT-Si hybrid solar cells". (submitted to ACSNano)
76 Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M.S. (1992), "Electronic structure of chiral graphene tubules", Appl. Phys. Lett., 60, 2204.   DOI
77 Pintossi, C., Salvinelli, G., Drera, G., Pagliara, S., Sangaletti, L., Del Gobbo, S., Morbidoni, M., Scarselli, M., De Crescenzi, M. and Castrucci, P. (2013) "Direct evidence of chemically inhomogeneous, nanostructured, Si-O buried interfaces and their effect on the efficiency of CNT/Si photovoltaic heterojunctions". (under Review)
78 Riben, A.R. and Feucht, D.L. (1966), "nGe-pGaAs Heterojunctions", Solid State Electron., 9, 1055-1065.   DOI   ScienceOn
79 Saini, V., Li, Z., Bourdo, S., Kunets, V.P., Trigwell, S., Couraud, A., Rioux, J., Boyer, C., Nteziyaremye, V., Dervishi, E., Biris, A.R., Salamo, G.J., Viswanathan, T. and Biris, A.S. (2011), "Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions", J. Appl. Phys., 109, 014321.   DOI
80 Saito, R., Dresselhaus, G. and Dresselhaus, M.S. (1993), "Electronic structure of double-layer graphene tubules", J. Appl. Phys., 73, 494   DOI
81 Saito, S. (1997), "Carbon nanotubes for next-generation electronics devices", Science, 278, 77-78.   DOI
82 Scarselli, M., Castrucci, P. and De Crescenzi, M., (2012a), "Electronic and optoelectronic nano-devices based on carbon nanotubes", J. Phys.: Condens. Matter, 24, 313202.   DOI
83 Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69, 255-260.
84 Shi, E., Zhang, L., Li, Z., Li, P., Shang, Y., Jia, Y., Wei, J., Wang, K., Zhu, H., Wu, D., Zhang, S. and Cao, A. (2012), "$TiO_{2}$-coated carbon nanotube-silicon solar cells with efficiency of 15%", Scientific Report, 2, 884.   DOI
85 Scarselli, M., Scilletta, C., Tombolini, F., Castrucci, P., Diociaiuti, M., Casciardi, S., Gatto, E., Venanzi, M. and De Crescenzi, M. (2009), "Multiwall carbon nanotubes decorated with copper nanoparticles: effect on the photocurrent response", J. of Phys. Chem. C, 113, 5860-5864.   DOI
86 Scarselli, M., Castrucci, P., Camilli, L., Del Gobbo, S., Casciardi, S., Tombolini, F., Gatto, E., Venanzi, M. and De Crescenzi, M. (2011), "Influence of Cu nanoparticle size on the photo-electrochemical response from Cu-multiwall carbon nanotube composites", Nanotechonology, 22, 035701.   DOI
87 Scarselli, M., Camilli, L., Matthes, L., Pulci, O., Castrucci, P., Gatto, E., Venanzi, M. and De Crescenzi, M. (2012b), "Photoresponse from noble metal nanoparticles-multi walled carbon nanotube composites", Appl. Phys. Lett., 101, 241113.   DOI
88 Shimizu, T., Xie, T., Nishikawa, J., Shingubara, S., Senz, S. and Gosele, U. (2007), "Synthesis of vertical high-density epitaxial Si(100) nanowire arrays on a Si(100) substrate using an anodic aluminum oxide template", Adv. Mater., 19, 917-920.   DOI   ScienceOn
89 Shu, Q., Wei , J., Wang, K., Zhu, H., Li, Z., Jia, Y., Gui, X., Guo, N., Li, X., Ma, C. and Wu, D. (2009), "Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes", Nano Lett., 9, 4338-4342.   DOI
90 Shin, D.W., Lee, J.H., Kim, Y.H., Yu, S.M., Park, S.Y., Yoo, J.B. (2009), "A role of $HNO_{3}$ on transparent conducting film with single-walled carbon nanotubes", Nanotechnology, 20, 475703.   DOI
91 Stewart, D.A. and Leonard, F. (2004), "Photocurrent in nanotube junctions", Phys. Rev. Lett., 93, 107401   DOI
92 Shyu, F.L. and Lin, M.F. (2000), "Loss spectra of graphite-related systems: A multiwall carbon nanotube, a single-wall carbon nanotube bundle, and graphite layers", Phys. Rev. B, 62, 8508-8516.   DOI
93 Shockley, W. and Queisser, H.J. (1961), "Detailed balance limit of efficiency of p-n junction solar cells ", J. Appl. Phys., 32, 510.   DOI
94 Sivakov, V., Andra, G., Gawlik, A., Berger, A., Plentz, J., Falk, F. and Christiansen, S. H. (2009), "Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters", Nano Lett., 9, 1549-1554.   DOI   ScienceOn
95 Sun, J.L., Wei, J., Zhu, J.L., Xu, D., Liu, X., Sun, H., Wu, D.H. and Wu, N.L. (2006), "Photoinduced currents in carbon nanotube/metal heterojunctions", Appl. Phys. Lett., 88, 131107.   DOI
96 Tey, J.N., Ho, X. and Wei, J. (2012), "Effect of doping on single-walled carbon nanotubes network of different metallicity", Nanoscale Res. Lett., 7, 548.   DOI
97 Tzolov, M.B., Kuo, T.F., Straus, D.A., Yin, A. and Xu, J. (2007), "Carbon nanotube-silicon heterojunction arrays and infrared photocurrent responses", J. Phys. Chem. C, 111, 5800-5804.
98 Tombler, T., Zhou, C., Alexeyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C., Tang, M. and Wu, S. (2000), "Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation", Nature, 405, 769-772.   DOI   ScienceOn
99 Tung, R.T. (2000), "Chemical bonding and Fermi level pinning at metal-semiconductor interfaces", Phys. Rev. Lett., 84, 6078-6081.   DOI
100 Tune, D.D., Flavel, B.S., Krupke, R. and Shapter, J. G. (2012), "Carbon nanotube-silicon solar cells", Adv. Energy Mater., 2, 1043-1055.   DOI
101 U.S. Department of Energy (2010), $1/W Photovoltaic Systems, 1-28.
102 Venema, L.C., Janssen, J.W., Buitelaar, M.R., Wildoer, J.W.G., Lemay, S.G., Kouwenhoven, L.P. and Dekker, C. (2000), "Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes", Phys. Rev. B, 62, 5238-5244.   DOI
103 Wadhwa, P., Liu, B., McCarthy, M.A., Wu, Z., Rinzler, A.G. (2010), "Electronic junction control in a nanotube-semiconducting Schottky junction solar cell", Nano Lett., 10, 5001-5005.   DOI
104 Wang, S., Khafizov, M., Tu, X., Zheng, M., and Krauss, T.D. (2010), "Multiple exciton generation in single-walled carbon nanotubes", Nano Lett., 10, 2381-2386.   DOI
105 Zhang, Z.B., Li, J., Cabezas, A.L. and Zhang, S.L. (2009), "Characterization of acid-treated carbon nanotube thin films by means of Raman spectroscopy and field effect response", Chem. Phys. Lett., 476, 258-261.   DOI
106 Wei, J., Jia,Y., Shu, Q., Gu, Z., Wang, K., Zhuang, D., Zhang, G., Wang, Z., Luo, J., Cao, A. and Wu, D. (2007), "Double-walled carbon nanotube solar cells", Nano Lett., 7, 2317-2321.   DOI
107 Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamars, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F. and Rinzler, A.G. (2004), "Transparent, conductive carbon nanotube films", Science, 305, 1273-1276.   DOI   ScienceOn
108 Zeidenbergs, G. and Anderson, R.L. (1967), "Si-GaP heterojunctions", Solid State Electron., 10, 113-123.   DOI
109 Okada, S. and Oshiyama, A. (2003), "Curvature-induced metallization of double-walled semiconducting zigzag carbon nanotubes", Phys. Rev. Lett., 91, 216801   DOI
110 Fujiwara, A., Matsuoka, Y., Suematsu, H., Ogawa, N., Miyano, K., Kataura, H., Maniwa, Y., Suzuki, S. and Achiba, Y. (2001), "Photoconductivity in semiconducting single-walled carbon nanotubes", Jpn. J. Appl. Phys., 40, L1229-L1231.   DOI
111 Bai, X., Wang, H., Wei, J., Jia,, Y., Zhu, H., Wang, K. and Wu, D. (2012), "Carbon nanotube-silicon hybrid solar cells with hydrogen peroxide doping", Chem. Phys. Lett., 533, 70-73.   DOI
112 El Khakani, M.A., Le Borgne, V., Aissa, B., Rosei, F., Scilletta, C., Speiser, E., Scarselli, M., Castrucci, P. and De Crescenzi, M. (2009), "Photocurrent generation in random networks of multiwall-carbon nanotubes grown by an "all-laser" process", Appl. Phys. Lett., 95, 083114.   DOI
113 Li, Z., Kunets, V.P., Saini, V., Xu, Y., Dervishi, E., Salamo, G.J., Biris, A.R. and Biris, A.S. (2008), "$SOCl_{2}$ enhanced photovoltaic conversion of single wall carbon nanotube/n-silicon heterojunctions", Appl. Phys. Lett., 93, 243117.   DOI
114 Shi, Y., Kim, K.K., Reina, A., Hofmann, M., Li, L.J. and Kong, J. (2010), "Work function engineering of graphene electrode via chemical doping", Acs Nano, 4, 2689-2694.   DOI
115 Shu, Q., Wei, J., Wang, K., Song, S., Guo, N., Jia, Y., Li, Z., Xu, Y., Cao, A., Zhu, H., Wu, D. (2010), "Efficient energy conversion of nanotube/nanowire-based solar cells", Chem. Commun., 46, 5533-5535.   DOI
116 Wang, H., Bai, X., Wei, J., Li, P., Jia, Y., Zhu, H., Wang, K. and Wu, D. (2012), "Preparation of CuI particles and their applications in carbon nanotube-Si heterojunction solar cells", Materials Letters, 79, 106-108.   DOI
117 Luque, A. and Hegedus, S. (2003), Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, 1168.
118 Fan, G., Fan, L., Li, Z., Bai, X., Mulligan, S., Jia, Y., Wang, K., Wei, J., Cao, A., Wu, D., Wei, B. and Zhu, J. (2012), "Hybrid effect of gas flow and light excitation in carbon/silicon Schottky solar cells", J. Mater. Chem., 22, 3330-3334.   DOI
119 Hoffert, M.I., Caldeira K., Jain, A.K., Haites, E.F., Harvey, L.D.D., Potter, S.D., Schelsinge, M.E., Schneider, S.H., Watts, R.G., Wigley, T.M.L. and Wuebbles, D.J. (1998), "Energy implications of future stabilization of atmospheric $CO_{2}$ content", Nature, 395, 881-884.   DOI   ScienceOn
120 Kim, J., Hong , A.J., Chandra, B., Tulevski, G.S. and Sadana, D.K. (2012), "Engineering of contact resistance between transparent single-walled carbon nanotube films and a-Si:H single junction solar cells by gold nanodots", Adv. Mater., 24, 1899-1892.   DOI
121 Ong, P.L., Euler, W.B., Levitsky, I.A. (2010b), "Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions", Nanotechnology, 21, 105203.   DOI