Browse > Article
http://dx.doi.org/10.3938/jkps.73.1356

Use of 1.7 kV and 3.3 kV SiC Diodes in Si-IGBT/ SiC Hybrid Technology  

Sharma, Y.K. (Dynex Semiconductor LTD)
Coulbeck, L. (Dynex Semiconductor LTD)
Mumby-Croft, P. (Dynex Semiconductor LTD)
Wang, Y. (Dynex Semiconductor LTD)
Deviny, I. (Dynex Semiconductor LTD)
Abstract
Replacing conventional Si diodes with SiC diodes in Si insulated gate bipolar transistor (IGBT) modules is advantageous as it can reduce power losses significantly. Also, the fast switching nature of the SiC diode will allow Si IGBTs to operate at their full high-switching-speed potential, which at present conventional Si diodes cannot do. In this work, the electrical test results for Si-IGBT/4HSiC-Schottky hybrid substrates (hybrid SiC substrates) are presented. These substrates are built for two voltage ratings, 1.7 kV and 3.3 kV. Comparisons of the 1.7 kV and the 3.3 kV Si-IGBT/Si-diode substrates (Si substrates) at room temperature ($20^{\circ}C$, RT) and high temperature ($H125^{\circ}C$, HT) have shown that the switching losses in hybrid SiC substrates are miniscule as compared to those in Si substrates but necessary steps are required to mitigate the ringing observed in the current waveforms. Also, the effect of design variations on the electrical performance of 1.7 kV, 50 A diodes is reported here. These variations are made in the active and termination regions of the device.
Keywords
IGBT; SiC; Schottky diode; Hybrid substrates; Switching losses; JTE and FLRs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Wu, J. Qin, M. Saeedifard, O. Wasynczuk and K. Shenai, IEEE Transactions on Electron Devices 62, 286 (2015).   DOI
2 J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas and A. Rebollo, IEEE Transactions on Power Electronics 29, 2155 (2014).   DOI
3 N. Murayama, K. Hirao, M. Sando, T. Tsuchiya and H. Yamaguchi, Ceramics International 44, 3523 (2017).
4 V. Esteve, J. Jordan, E. Sanchis-Kilders, J. Dede, E. Maset and E. Ferreres, IEEE Transactions on Industrial Electronics 62, 1440 (2015).
5 Y. Yang, B. Duan, S. Yuan and H. Jia, in Advanced Silicon Carbide Devices and Processing (2015), p. 175.
6 M. Bhatnagar, P. K. McLarty and B. J. Baliga, IEEE Electron Device Letters 13, 501 (1992).   DOI
7 B. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer US, 2010) Vol. 1, chap. 1, p. 1.
8 T. Kimoto, Japanese Journal of Applied Physics 54, 040103 (2015).   DOI
9 J. Biela, M. Schweizer, S. Waffler and J. W.Kolar, IEEE Transactions on Industrial Electronics 58, 28722872 (2011).
10 Y. Sharma, Advanced $SiO_2$/SiC Interface Passivation, PhD diss., 2012.
11 D. Han, Y. Li and B. Sarlioglu in IEEE Applied Power Electronics Conference and Exposition (APEC) (2015), p. 304.
12 D. Han, J. Noppakunkajorn and B. Sarlioglu, IEEE Transactions on Vehicular Technology 63, 3001 (2014).   DOI
13 https://www.wolfspeed.com/power/products.
14 http://www.rohm.com/web/eu/groups/-/group/groupname/SiC%20Power%20Devices.
15 https://www.infineon.com/cms/en/product/power/silicon-carbide-sic/.
16 K. Ishikawa, K. Terasawa, T. Sakai, S. Sugimoto and T. Nishino, Hitachi Review 66, 155 (2017).