• Title/Summary/Keyword: Shape Aspect Ratio

Search Result 368, Processing Time 0.027 seconds

Preparation of α-Al2O3 Platelets from Aluminum Hydroxides Gel (Aluminium Hydroxides Gel을 이용한 α-Al2O3 판상체의 제조)

  • 박병기;이정민;서동수;임광수
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.610-617
    • /
    • 2004
  • For preparation $\alpha$-Al$_2$O$_3$ platelets having 20 $\mu$m in average diameter and 0.2∼0.3 $\mu$m in thickness, we have prepared aluminum hydroxides gel by using aluminum sulfate and sodium sulfate as starting materials. In this study, we investigated the effect of the amount of sodium phosphate on particle size, morphology and thickness of $\alpha$-Al$_2$O$_3$ platelets. When sodium phosphate was not added to aluminum hydroxides gel, most of $\alpha$-Al$_2$O$_3$ platelets had hexagonal shape but the thickness was over 1.0 $\mu$m, and this sample was not adequate for pearlescent pigment. On the other hand, introduction of sodium phosphate caused an increase of aspect ratio (particle diameter/thickness) with a decrease in $\alpha$-Al$_2$O$_3$ platelet thickness.

Practical Study of Area Error Formula in Numerical and Graphical Cadastral Surveying (수치 및 도해 지적측량의 면적오차 계산식에 관한 현실적 고찰)

  • Yang, Chul Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.509-516
    • /
    • 2017
  • In cadastral surveying, there are problems that no area error is allowed where numerical surveying is carried out, and allowable area error is specified irrespective of parcel shape where graphic surveying is carried out. In this research, we derived a general formula of parcel area error necessary for grasping these two problems. The calculations using the derived formula showed that where the coordinate error of the boundary point is set to 5cm+10ppm practically, then even a small parcel of $100 m^2$ includes non-negligible area error of $0.71m^2$. And, it is found that the area error specified by the current egulation is based on a rectangular parcel of 1:5 aspect ratio. These results show that the area error of polygon parcel can be determined by a single formula by specifying the coordinate error of the boundary points, and can be used to revise the current regulations that can be applied uniformly regardless of surveying methods.

Improvement of Electrical Properties by Controlling Nickel Plating Temperatures for All Solid Alumina Capacitors

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.25.2-25.2
    • /
    • 2011
  • Recently, thin film capacitors used for vehicle inverters are small size, high capacitance, fast response, and large capacitance. But its applications were made up of liquid as electrolyte, so its capacitors are limited to low operating temperature range and the polarity. This research proposes using Ni-P alloys by electroless plating as the electrode instead of liquid electrode. Our substrate has a high aspect ratio and complicated shape because of anodic aluminum oxide (AAO). We used AAO because film thickness and effective surface area are depended on for high capacitance. As the metal electrode instead of electrolyte is injected into AAO, the film capacitor has advantages high voltage, wide operating temperature, and excellent frequency property. However, thin film capacitor made by electroless-plated Ni on AAO for full-filling into etched tunnel was limited from optimizing the deposition process so as to prevent open-through pore structures at the electroless plating owing to complicated morphological structure. In this paper, the electroless plating parameters are controlled by temperature in electroless Ni plating for reducing reaction rate. The Electrical properties with I-V and capacitance density were measured. By using nickel electrode, the capacitance density for the etched and Ni electroless plated films was 100 nFcm-2 while that for a film without any etch tunnel was 12.5 nFcm-2. Breakdown voltage and leakage current are improved, as the properties of metal deposition by electroless plating. The synthesized final nanostructures were characterized by scanning electron microscopy (SEM).

  • PDF

Free Vibration of Three-Dimensional Laminated Composite Structures with Different Embedded Delamination Sizes and Locations (내재된 층간분리의 크기 및 위치 변화에 대한 3차원 복합소재 적층 구조의 자유 진동 특성)

  • Noh, Myung-Hyun;Park, Dae-Yong;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This study investigates free vibration characteristics of laminated composite structures with different embedded delamination sizes and locations using the solid element. The three-dimensional finite element (FE) delamination model described in this paper, in comparison with the conventional approaches, is more attractive not only because it shows better accuracy but also it shows the entire mode shape. The FE model using ABAQUS is used for studying free vibrations of laminates containing an various embedded delamination. The numerical results obtained are in good agreement with those reported by other investigators. In particular, new results reported in this paper are focused on the significant effects of the local vibration mode for various parameters, such as size of delamination, aspect ratio, and location of delamination.

Electrochemical Synthesis of Dumbbell-like Au-Ni-Au Nanorods and Their Surface Plasmon Resonance

  • Park, Yeon Ju;Liu, Lichun;Yoo, Sang-Hoon;Park, Sungho
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.57-62
    • /
    • 2012
  • In this report, we demonstrate that the longitudinal localized surface plasmon resonance mode can be suppressed when the nanorods were in dumbbell shape. The seed nanorods were synthesized by electrochemical deposition of metals into the pores of anodic aluminum oxide templates. The dumbbell-like nanorods were grown from seed Au-Ni-Au nanorods by a rate-controlled seed-mediated growth strategy. The selective deposition of Au atoms onto Au blocks of Au-Ni-Au nanorods produced larger diameter of Au nanorods with bumpy surface resulting in dumbbell-like nanorods. The morphology of nanorods depended on the reduction rate of $AuCl_4^-$, slow rate producing smooth surface of Au nanorods, but high reduction rate producing bumpy surface morphology. Through systematic investigation into the UV-Vis-NIR spectroscopy, we found that the multiple localized surface plasmon resonance (LSPR) modes were available from single-component Au nanorods. And, their LSPR modes of Au NRs with bumpy surface, compared to the smooth seed Au NRs, were red-shifted, which was obviously attributed to the increased electron oscillation pathways. While the longitudinal LSPR modes of smoothly grown Au NRs were blue-shifted except for a dipole transverse LSPR mode, which can be interpreted by decreased aspect ratio. In addition, dumbbell-like nanorods showed an almost disappeared longitudinal LSPR mode. It reflects that the plasmonic properties can be engineered using complex nanorods structure.

Analysis of Hydrostatic Bulging of a Rectangular Diaphragm by Using the Energy Method (에너지법에 의한 직사각형 격막의 정수압벌징 해석)

  • 양동열;이항수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.684-695
    • /
    • 1992
  • The present study is concerned with the analysis of three-dimensional sheet metal forming process by the upper-bound method. For the analysis a systematic approach is necessary for the expression of geometric configuration of the deforming workpiece. In the present paper geometric configuration is constructed by three unit surfaces which are defined by sweeping the vertical section curves and boundary curve. The principal components of strain increment during the process is calculated directly from the change of geometric configuration for an arbitrary triangular element. The corresponding solution is found through optimization of the total energy consumption with respect to some parameters assumed in the velocity field and geometric profile. In order to verify the effectiveness of the present method, hydrostatic bulging of a rectangular disphragm is analyzed and the computation by the present method for the geometric shape renders the good result. From the comparison of the present results with the existing experimental results and elastic-plastic finite element solutions, good agreements have been obtained for the pressure curves, polar membrane strains and pressure distributions. The present method can thus be further applied to the analysis of other three-dimensional sheet metal forming processes.

Soft Magnetic Property of Ternary Fe-9.8Si-6.0Al Alloy Using by Recycling Fe-Si Electrical Steel Sheet Scrap (Fe-Si 전기강판 폐스크랩을 이용한 3원계 Fe-9.8Si-6.0Al 합금의 연자성 특성)

  • Hong, Won Sik;Yang, Hyoung Woo;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Fe-9.8Si-6.0Al mother alloy was manufactured using by Fe-3.5Si recycled scrap and Si powder. And then, soft magnetic alloy powder of $D_{50}$ size and sphere type were prepared by gas atomization process. To obtain the soft magnetic powder of a high aspect ratio, in the first, we conducted the ball milling process for 8 hours. And heat treatment was performed under $650^{\circ}C$, 2 hours and $N_2$ atmosphere condition for reducing the residual stress of the powder. Based on these process, we made around $50{\mu}m$ diameter Fe-9.8Si-6.0Al powder, which morphology and shape was a similar to the commercial Fe-Si-Al powder. Finally, the soft magnetic sheets were prepared by tape casting process using by those powders. The permeability of the tape casting sheet was measured, and we confirmed the possibility of reusing to the soft magnetic materials of Fe-Si electric sheet scrap.

Development of Source Profiles for Asbestos and Non-asbestos Fibers by SEM/EDX (SEM/EDX를 이용한 석면 및 비석명의 오염원분류표 개발)

  • Choi, Young-A;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.718-726
    • /
    • 2007
  • There are many varieties of asbestos: chrysotile, crocidolite, amosite, tremolite, actinolite, and anthophylite. These are widely used in construction materials, brake lining, textile, and so on. Even though non-asbestos fibers such as glassfiber and rockwool have manufactured because asbestos causes asbestosis, lung cancer, mesothelioma, etc., some bad effects of non-asbestos have been also reported. PCM (phase contrast microscopy) and PLM (polarized light microscopy) have been used to qualitatively analyze asbestoses. These techniques have serious drawbacks when identifying and separating various asbestoses. Recently scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX) has been known as an useful tool to analyze airborne particle since it provides physical and chemical information simultaneously. The purpose of the study was to classify both asbestos and non-asbestos fibers and finally to develop their source profiles by using the SEM/EDX. The source profiles characterized by 6 different types of asbestos fibers and 2 types of non-asbestos fibers had been developed by analyzing a total of 380 fibers. Analytical parameters used in this study were length, width, aspect ratio, and shape as physical information, and Na, Mg, Al, Si, K, Ca, Cr, Mn, Fe, and Cu as chemical information. All the parameters were intensively reviewed.

Adhesive bonding using thick polymer film of SU-8 photoresist for wafer level package

  • Na, Kyoung-Hwan;Kim, Ill-Hwan;Lee, Eun-Sung;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2007
  • For the application to optic devices, wafer level package including spacer with particular thickness according to optical design could be required. In these cases, the uniformity of spacer thickness is important for bonding strength and optical performance. Packaging process has to be performed at low temperature in order to prevent damage to devices fabricated before packaging. And if photosensitive material is used as spacer layer, size and shape of pattern and thickness of spacer can be easily controlled. This paper presents polymer bonding using thick, uniform and patterned spacing layer of SU-8 2100 photoresist for wafer level package. SU-8, negative photoresist, can be coated uniformly by spin coater and it is cured at $95^{\circ}C$ and bonded well near the temperature. It can be bonded to silicon well, patterned with high aspect ratio and easy to form thick layer due to its high viscosity. It is also mechanically strong, chemically resistive and thermally stable. But adhesion of SU-8 to glass is poor, and in the case of forming thick layer, SU-8 layer leans from the perpendicular due to imbalance to gravity. To solve leaning problem, the wafer rotating system was introduced. Imbalance to gravity of thick layer was cancelled out through rotating wafer during curing time. And depositing additional layer of gold onto glass could improve adhesion strength of SU-8 to glass. Conclusively, we established the coating condition for forming patterned SU-8 layer with $400{\mu}m$ of thickness and 3.25 % of uniformity through single coating. Also we improved tensile strength from hundreds kPa to maximum 9.43 MPa through depositing gold layer onto glass substrate.

Design of Ultrasonic Vibration Device using PZT Actuator for Precision Laser Machining (압전구동기를 이용한 정밀 가공용 초음파 진동장치 설계)

  • Kim, W.J.;Fei, L.;Cho, S.H.;Park, J.K.;Lee, M.G.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.8-12
    • /
    • 2011
  • As the aged population grows around the world, many medical instruments and devices have been developed recently. Among the devices, a drug delivery stent is a medical device which requires precision machining. Conventional drug delivery stent has problems of residual polymer and decoating because the drug is coated on the surface of stent with the polymer. If the drug is impregnated in micro hole array on the surface of the stent, the problem can be solved. Micro sized holes are generally fabricated by laser machining; however, the fabricated holes do not have an enough aspect ratio to contain the drug or a good surface finish to deliver it to blood vessel tissue. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for the fabrication of micro sized holes. If the mechanism vibrates the eyepiece of the laser machining head, the laser spot on the workpiece will vibrate vertically because objective lens in the eyepiece shakes by the mechanism's vibration. According to the former researches, the vibrating frequency over 20kHz and amplitude over 500nm are preferable. The vibration mechanism has cylindrical guide, hollowed PZT and supports. In the cylinder, the eyepiece is mounted. The cylindrical guide has upper and low plates and side wall. The shape of plates and side wall are designed to have high resonating frequency and large amplitude of motion. The PZT also is selected to have high actuating force and high speed of motion. The support has symmetrical and rigid characteristics.

  • PDF