Browse > Article
http://dx.doi.org/10.5229/JECST.2012.3.2.57

Electrochemical Synthesis of Dumbbell-like Au-Ni-Au Nanorods and Their Surface Plasmon Resonance  

Park, Yeon Ju (Department of Chemistry, SungKyunKwan University)
Liu, Lichun (Department of Chemistry, SungKyunKwan University)
Yoo, Sang-Hoon (Department of Chemistry, SungKyunKwan University)
Park, Sungho (Department of Chemistry, SungKyunKwan University)
Publication Information
Journal of Electrochemical Science and Technology / v.3, no.2, 2012 , pp. 57-62 More about this Journal
Abstract
In this report, we demonstrate that the longitudinal localized surface plasmon resonance mode can be suppressed when the nanorods were in dumbbell shape. The seed nanorods were synthesized by electrochemical deposition of metals into the pores of anodic aluminum oxide templates. The dumbbell-like nanorods were grown from seed Au-Ni-Au nanorods by a rate-controlled seed-mediated growth strategy. The selective deposition of Au atoms onto Au blocks of Au-Ni-Au nanorods produced larger diameter of Au nanorods with bumpy surface resulting in dumbbell-like nanorods. The morphology of nanorods depended on the reduction rate of $AuCl_4^-$, slow rate producing smooth surface of Au nanorods, but high reduction rate producing bumpy surface morphology. Through systematic investigation into the UV-Vis-NIR spectroscopy, we found that the multiple localized surface plasmon resonance (LSPR) modes were available from single-component Au nanorods. And, their LSPR modes of Au NRs with bumpy surface, compared to the smooth seed Au NRs, were red-shifted, which was obviously attributed to the increased electron oscillation pathways. While the longitudinal LSPR modes of smoothly grown Au NRs were blue-shifted except for a dipole transverse LSPR mode, which can be interpreted by decreased aspect ratio. In addition, dumbbell-like nanorods showed an almost disappeared longitudinal LSPR mode. It reflects that the plasmonic properties can be engineered using complex nanorods structure.
Keywords
Electrochemical deposition; Nanorod; Surface Plasmon; Dumbbell; AAO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers and R. G. Nuzzo, Chem. Rev., 108, 494 (2008).   DOI   ScienceOn
2 W. L. Barnes, A. Dereux and T. W. Ebbesen, Nature, 424, 824 (2003).   DOI   ScienceOn
3 H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim and S. Park, Nano Lett., 8, 2265 (2008).   DOI   ScienceOn
4 S. Kim, S. K. Kim and S. Park, J. Am. Chem. Soc., 131, 8380 (2009).   DOI   ScienceOn
5 S. Sheikholeslami, Y. W. Jun, P. K. Jain and A. P. Alivisatos, Nano Lett., 10, 2655 (2010).   DOI   ScienceOn
6 Z. Jiao, H. Xia and X. Tao, J. Phys. Chem. C, 115, 7887 (2011).   DOI   ScienceOn
7 C. J. Noguez, Phys. Chem. C, 111, 3806 (2007).   DOI   ScienceOn
8 P. K. Jain, S. Eustis and M. A. El-Sayed, J. Phys. Chem. B, 110, 18243 (2006).   DOI   ScienceOn
9 B. N. Khlebtsov and N. G. Khlebtsov, J. Phys. Chem. C, 111, 11516 (2007).   DOI   ScienceOn
10 M. Grzelczak, J. Perez-Juste, F. J. Garcia de Abajo and L. M. Liz-Marzan, J. Phys. Chem. C, 111, 6183 (2007).
11 H. Masuda and K. Fukuda, Science, 268, 1466 (1995).   DOI   ScienceOn
12 N. R. Jana, L. Gearheart and C. J. Murphy, Chem. Mater., 13, 2313 (2001).   DOI   ScienceOn
13 E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz and C. A. Mirkin, J. Phys. Chem. B, 110, 2150 (2006).   DOI   ScienceOn
14 S. Kim, K. L. Shuford, H.-M. Bok, S. K. Kim and S. Park, Nano Lett., 8, 800 (2008).   DOI   ScienceOn
15 H. M. Bok, K. L. Shuford, E. Jeong and S. Park, Chem. Comm., 46, 982 (2010).   DOI   ScienceOn