DOI QR코드

DOI QR Code

Electrochemical Synthesis of Dumbbell-like Au-Ni-Au Nanorods and Their Surface Plasmon Resonance

  • Park, Yeon Ju (Department of Chemistry, SungKyunKwan University) ;
  • Liu, Lichun (Department of Chemistry, SungKyunKwan University) ;
  • Yoo, Sang-Hoon (Department of Chemistry, SungKyunKwan University) ;
  • Park, Sungho (Department of Chemistry, SungKyunKwan University)
  • Received : 2012.04.12
  • Accepted : 2012.06.20
  • Published : 2012.06.30

Abstract

In this report, we demonstrate that the longitudinal localized surface plasmon resonance mode can be suppressed when the nanorods were in dumbbell shape. The seed nanorods were synthesized by electrochemical deposition of metals into the pores of anodic aluminum oxide templates. The dumbbell-like nanorods were grown from seed Au-Ni-Au nanorods by a rate-controlled seed-mediated growth strategy. The selective deposition of Au atoms onto Au blocks of Au-Ni-Au nanorods produced larger diameter of Au nanorods with bumpy surface resulting in dumbbell-like nanorods. The morphology of nanorods depended on the reduction rate of $AuCl_4^-$, slow rate producing smooth surface of Au nanorods, but high reduction rate producing bumpy surface morphology. Through systematic investigation into the UV-Vis-NIR spectroscopy, we found that the multiple localized surface plasmon resonance (LSPR) modes were available from single-component Au nanorods. And, their LSPR modes of Au NRs with bumpy surface, compared to the smooth seed Au NRs, were red-shifted, which was obviously attributed to the increased electron oscillation pathways. While the longitudinal LSPR modes of smoothly grown Au NRs were blue-shifted except for a dipole transverse LSPR mode, which can be interpreted by decreased aspect ratio. In addition, dumbbell-like nanorods showed an almost disappeared longitudinal LSPR mode. It reflects that the plasmonic properties can be engineered using complex nanorods structure.

Keywords

References

  1. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers and R. G. Nuzzo, Chem. Rev., 108, 494 (2008). https://doi.org/10.1021/cr068126n
  2. W. L. Barnes, A. Dereux and T. W. Ebbesen, Nature, 424, 824 (2003). https://doi.org/10.1038/nature01937
  3. H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim and S. Park, Nano Lett., 8, 2265 (2008). https://doi.org/10.1021/nl800924r
  4. S. Kim, S. K. Kim and S. Park, J. Am. Chem. Soc., 131, 8380 (2009). https://doi.org/10.1021/ja903093t
  5. S. Sheikholeslami, Y. W. Jun, P. K. Jain and A. P. Alivisatos, Nano Lett., 10, 2655 (2010). https://doi.org/10.1021/nl101380f
  6. Z. Jiao, H. Xia and X. Tao, J. Phys. Chem. C, 115, 7887 (2011). https://doi.org/10.1021/jp111605j
  7. C. J. Noguez, Phys. Chem. C, 111, 3806 (2007). https://doi.org/10.1021/jp066539m
  8. P. K. Jain, S. Eustis and M. A. El-Sayed, J. Phys. Chem. B, 110, 18243 (2006). https://doi.org/10.1021/jp063879z
  9. B. N. Khlebtsov and N. G. Khlebtsov, J. Phys. Chem. C, 111, 11516 (2007). https://doi.org/10.1021/jp072707e
  10. M. Grzelczak, J. Perez-Juste, F. J. Garcia de Abajo and L. M. Liz-Marzan, J. Phys. Chem. C, 111, 6183 (2007).
  11. H. Masuda and K. Fukuda, Science, 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466
  12. N. R. Jana, L. Gearheart and C. J. Murphy, Chem. Mater., 13, 2313 (2001). https://doi.org/10.1021/cm000662n
  13. E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz and C. A. Mirkin, J. Phys. Chem. B, 110, 2150 (2006). https://doi.org/10.1021/jp056606x
  14. S. Kim, K. L. Shuford, H.-M. Bok, S. K. Kim and S. Park, Nano Lett., 8, 800 (2008). https://doi.org/10.1021/nl0726353
  15. H. M. Bok, K. L. Shuford, E. Jeong and S. Park, Chem. Comm., 46, 982 (2010). https://doi.org/10.1039/b918510k