• Title/Summary/Keyword: Sequence-dependent Setup Times

Search Result 28, Processing Time 0.024 seconds

Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine Overlapping Sequence-dependent Setup Times

  • Mongkalig, Chatpon;Tabucanon, Mario T.;Hop, Nguyen Van
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.1-22
    • /
    • 2005
  • This paper presents new scheduling heuristics, namely Mean Progressive Weighted Tardiness Estimator (MPWT) Heuristic Method and modified priority rules with sequence-dependent setup times consideration. These are designed to solve job shop scheduling problems with new performance measures - progressive weighted tardiness penalties. More realistic constraints, which are inter-machine overlapping sequence-dependent setup times, are considered. In real production environments, inter-machine overlapping sequence-dependent setups are significant. Therefore, modified scheduling generation algorithms of active and nondelay schedules for job shop problems with inter-machine overlapping sequence-dependent setup times are proposed in this paper. In addition, new customer-based measures of performance, which are total earliness and progressive weighted tardiness, and total progressive weighted tardiness, are proposed. The objective of the first experiment is to compare the proposed priority rules with the consideration of sequence-dependent setup times and the standard priority rules without setup times consideration. The results indicate that the proposed priority rules with setup times consideration are superior to the standard priority rules without the consideration of setup times. From the second experiment and the third experiment to compare the proposed MPWT heuristic approach with the efficient priority rules with setup times consideration, the MPWT heuristic method is significantly superior to the Batched Apparent Tardiness Cost with Sequence-dependent Setups (BATCS) rule, and other priority rules based on total earliness and progressive weighted tardiness, and total earliness and tardiness.

A Simulated Annealing Algorithm for the Capacitated Lot-sizing and Scheduling problem under Sequence-Dependent Setup Costs and Setup Times (순서에 종속된 준비 시간과 준비 비용을 고려한 로트사이징 문제의 시뮬레이티드 어닐링 해법)

  • Jung, Jiyoung;Park, Sungsoo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.2
    • /
    • pp.98-103
    • /
    • 2006
  • In this research, the single machine capacitated lot-sizing and scheduling problem with sequence- dependent setup costs and setup times (CLSPSD) is considered. This problem is the extension of capacitated lot-sizing and scheduling problem (CLSP) with an additional assumption on sequence-dependent setup costs and setup times. The objective of the problem is minimizing the sum of production costs, inventory holding costs and setup costs satisfying customers' demands. It is known that the CLSPSD is NP-hard. In this paper, the MIP formulation is presented. To handle the problem more efficiently, a conceptual model is suggested, and one of the well-known meta-heuristics, the simulated annealing approach is applied. To illustrate the performance of this approach, various instances are tested and the results of this algorithm are compared with those of the CLPEX. Computational results show that this approach generates optimal or nearly optimal solutions.

Common Due-Date Assignment and Scheduling on Parallel Machines with Sequence-Dependent Setup Times

  • Kim, Jun-Gyu;Yu, Jae-Min;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper considers common due-date assignment and scheduling on parallel machines. The main decisions are: (a) deter-mining the common due-date; (b) allocating jobs to machines; and (c) sequencing the jobs assigned to each machine. The objective is to minimize the sum of the penalties associated with common due-date assignment, earliness and tardiness. As an extension of the existing studies on the problem, we consider sequence-dependent setup times that depend on the type of job just completed and on the job to be processed. The sequence-dependent setups, commonly found in various manufacturing systems, make the problem much more complicated. To represent the problem more clearly, a mixed integer programming model is suggested, and due to the complexity of the problem, two heuristics, one with individual sequence-dependent setup times and the other with aggregated sequence-dependent setup times, are suggested after analyzing the characteristics of the problem. Computational experiments were done on a number of test instances and the results are reported.

Genetic Algorithm with an Effective Dispatching Method for Unrelated Parallel Machine Scheduling with Sequence Dependent and Machine Dependent Setup Times (작업순서와 기계 의존적인 작업준비시간을 고려한 이종병렬기계의 일정계획을 위한 효과적인 작업할당 방법을 이용한 유전알고리즘)

  • Joo, Cheol-Min;Kim, Byung-Soo
    • IE interfaces
    • /
    • v.25 no.3
    • /
    • pp.357-364
    • /
    • 2012
  • This paper considers a unrelated parallel machine scheduling problem with ready times, due times and sequence and machine-dependent setup times. The objective of this problem is to determine the allocation of jobs and the scheduling of machines to minimize the total tardy time. A mathematical model for optimal solution is derived. An in-depth analysis of the model shows that it is very complicated and difficult to obtain optimal solutions as the problem size becomes large. Therefore, a genetic algorithm using an effective dispatching method is proposed. The performance of the proposed genetic algorithm is evaluated using several randomly generated examples.

A Tabu Search Algorithm for Single Machine Scheduling Problem with Job Release Times and Sequence - dependent Setup Times (작업 투입시점과 순서 의존적인 작업준비시간이 존재하는 단일 기계 일정계획 수립을 위한 Tabu Search)

  • Shin, Hyun-Joon;Kim, Sung-Shick;Ko, Kyoung-Suk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.2
    • /
    • pp.158-168
    • /
    • 2001
  • We present a tabu search (TS) algorithm to minimize maximum lateness on a single machine in the presence of sequence dependent setup times and dynamic job arrivals. The TS algorithm starts with a feasible schedule generated by a modified ATCS (Apparent Tardiness Cost with Setups) rule, then through a series of search steps it improves the initial schedule. Results of extensive computational experiments show that the TS algorithm significantly outperforms a well-known RHP heuristic by Ovacik and Uzsoy, both on the solutions quality and the computation time. The performance advantage is particularly pronounced when there is high competition among jobs for machine capacity.

  • PDF

Heuristics for Non-Identical Parallel Machine Scheduling with Sequence Dependent Setup Times (작업순서 의존형 준비시간을 갖는 이종병렬기계의 휴리스틱 일정계획)

  • Koh, Shiegheun;Mahardini, Karunia A.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.305-312
    • /
    • 2014
  • This research deals with a problem that minimizes makespan in a non-identical parallel machine system with sequence and machine dependent setup times and machine dependent processing times. We first present a new mixed integer programming formulation for the problem, and using this formulation, one can easily find optimal solutions for small problems. However, since the problem is NP-hard and the size of a real problem is large, we propose four heuristic algorithms including genetic algorithm based heuristics to solve the practical big-size problems in a reasonable computational time. To assess the performance of the algorithms, we conduct a computational experiment, from which we found the heuristic algorithms show different performances as the problem characteristics are changed and the simple heuristics show better performances than genetic algorithm based heuristics for the case when the numbers of jobs and/or machines are large.

Non-Identical Parallel Machine Scheduling with Sequence and Machine Dependent Setup Times Using Meta-Heuristic Algorithms

  • Joo, Cheol-Min;Kim, Byung-Soo
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.114-122
    • /
    • 2012
  • This paper considers a non-identical parallel machine scheduling problem with sequence and machine dependent setup times. The objective of this problem is to determine the allocation of jobs and the scheduling of each machine to minimize makespan. A mathematical model for optimal solution is derived. An in-depth analysis of the model shows that it is very complicated and difficult to obtain optimal solutions as the problem size becomes large. Therefore, two meta-heuristics, genetic algorithm (GA) and a new population-based evolutionary meta-heuristic called self-evolution algorithm (SEA), are proposed. The performances of the meta-heuristic algorithms are evaluated through compare with optimal solutions using randomly generated several examples.

A Development of Optimal Algorithms for N/M/D/F/Fmax Scheduling Problems (N/M/D/F/Fmax 일정계획 문제에서 최적 알고리듬의 개발)

  • 최성운
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.21
    • /
    • pp.91-100
    • /
    • 1990
  • This paper is concerned with the development of optimal algorithms for multi-stage flowshop scheduling problems with sequence dependent setup times. In the previous researches the setup time of a job is considered to be able to begin at the earliest opportunity given a particular sequence at the start of operations. In this paper the setup time of a job is considered to be able to begin only at the completion of that job on the previous machine to reflect the effects of the setup time to the performance measure of sequence dependent setup time flowshop scheduling. The results of the study consist of two areas; first, a general integer programming(IP) model is formulated and a nixed integer linear programming(MILP) model is also formulated by introducing a new binary variable. Second a depth-first branch and bound algorithm is developed. To reduce the computational burdens we use the best heuristic schedule developed by Choi(1989) as the first trial. The experiments for developed algorithm are designed for a 4$\times$3$\times$3 factorial design with 360 observations. The experimental factors are PS(ratio of processing time to setup time), M(number of machines), N(number of jobs).

  • PDF

An Improved Ant Colony System for Parallel-Machine Scheduling Problem with Job Release Times and Sequence-Dependent Setup Times (작업투입시점과 순서의존적인 준비시간이 존재하는 병렬기계 일정계획을 위한 개선 개미군집 시스템)

  • Joo, Cheol-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.4
    • /
    • pp.218-225
    • /
    • 2009
  • This paper considers a parallel-machine scheduling problem with job release times and sequence-dependent setup times. The objective of this problem is to determine the allocation policy of jobs and the scheduling policy of machines so as to minimize the weighted sum of setup times, delay times, and tardy times. A mathematical model for optimal solution is derived and a meta heuristic algorithm based on the improved ant colony system is proposed in this paper. The performance of the meta heuristic algorithm is evaluated through compare with optimal solutions using randomly generated several examples.

A Study on the Lot Sizing and Scheduling in Process Industries (장치 산업에서 로트 크기와 작업 순서 결정을 위한 연구)

  • 이호일;김만식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.12 no.19
    • /
    • pp.79-88
    • /
    • 1989
  • This characteristics of process industries are high capital intensity, relatively long and sequence dependent setup times, and extremely limited capacity resources. The lot sizing, sequencing and limited capacity resources factors must he considered for production scheduling in these industries. This paper presents a mixed integer programming model for production scheduling. The economic trade offs between capacitated lot sizing flow shop scheduling and sequence dependent setup times also be compared with SMITH-DANIELS's model. As a results, it is shown that this paper has lower total cost, more efficient throughput than SMITH-DANIELS's model.

  • PDF