

Common Due-Date Assignment and Scheduling
on Parallel Machines with Sequence-Dependent

Setup Times

Jun-Gyu Kim
 Department of Industrial Engineering, Hanyang University

Jae-Min Yu
Department of Industrial Engineering, Hanyang University

Dong-Ho Lee*
Department of Industrial Engineering and Graduate School of Technology and Innovation Management,

Hanyang University

(Received: December 18, 2012 / Revised: January 15, 2013 / Accepted: January 18, 2013)

ABSTRACT

This paper considers common due-date assignment and scheduling on parallel machines. The main decisions are: (a)
deter-mining the common due-date; (b) allocating jobs to machines; and (c) sequencing the jobs assigned to each ma-
chine. The objective is to minimize the sum of the penalties associated with common due-date assignment, earliness
and tardiness. As an extension of the existing studies on the problem, we consider sequence-dependent setup times
that depend on the type of job just completed and on the job to be processed. The sequence-dependent setups, com-
monly found in various manufacturing systems, make the problem much more complicated. To represent the problem
more clearly, a mixed integer programming model is suggested, and due to the complexity of the problem, two heuris-
tics, one with individual sequence-dependent setup times and the other with aggregated sequence-dependent setup
times, are suggested after analyzing the characteristics of the problem. Computational experiments were done on a
number of test instances and the results are reported.

Keywords: Parallel Machines, Due-Date Assignment, Scheduling, Sequence-Dependent Setup Times, Heuristics

* Corresponding Author, E-mail: leman@hanyang.ac.kr

1. INTRODUCTION

Due-date assignment and scheduling have been re-
ceived considerable attention in the last few decades due
to the introduction of the just-in-time (JIT) concept. The
JIT systems work in such a way that jobs are to be com-
pleted neither too early nor too late with respect to their
due-dates. Also, they consider the due-date as a control-
lable variable, i.e., due-dates can be set by negotiation.

Assigning due-dates has a certain practical implica-
tion when a company offers due-dates to its customers

during sale negotiations or offers a price reduction when
the due-date is far away from the expected one. In fact,
we can see many situations where due-dates are negoti-
ated rather than simply set by customers. Here, the ear-
lier the due-dates are set, the higher the probability of
the loss of customer goodwill since the products may
not be completed or delivered on time. On the other hand,
the later the due-dates are set, the higher the probability
of having high inventory due to the early completions of
products. Therefore, due-date assignment is one of im-
portant practical decisions when considering customer

Management Science and Financial Engineering
Vol 19, No 1, May 2013, pp.29-36 http://dx.doi.org/10.7737/MSFE.2013.19.1.029
ISSN 2287-2043│EISSN 2287-2361│ © 2013 KORMS

Kim, Yu, and Lee: Management Science and Financial Engineering
Vol 19, No 1, May 2013, pp.29-36, © 2013 KORMS 30

orders.
Among various due-date assignment and schedul-

ing problems, this paper focuses on the problem on par-
allel machines. The problem is to determine the com-
mon due-date as well as the allocation of jobs to parallel
machines and the sequence of the jobs assigned to each
machine. In general, prescribing a common due-date
might represent a situation in which several items con-
stitute a single customer order or reflect an assembly
environment in which components should all be ready at
the same time in order to avoid staging delays (Baker
and Scudder, 1990).

There are a number of previous research articles on
common due-date assignment and sequencing on a sin-
gle machine. As a pioneering research, Panwalkar et al.
(1982) consider the problem that minimizes the sum of
the penalties associated with assigning common due-
date, earliness and tardiness and suggest an optimal al-
gorithm in which the common due-date is set in advance
using the preliminary analysis and then each job is se-
quenced based on the weight value corresponding to
each position. From this original work, there have been
a number of research articles on the basic single ma-
chine problem (Baker and Scudder, 1989; Cheng, 1986)
and its extensions (Biskup and Jahnke, 2001; Chen,
1996; Cheng and Kovalyov, 1996; Cheng et al., 2002;
Cheng, 1990; Dvir and George, 2006; Hall, 1986; Kim
and Lee, 2009; Kim et al., 2012; Ng et al., 2003; Quad-
dus, 1987; Xia et al., 2008). See Gordon et al. (2002)
for a literature review on various common due-date as-
signment and scheduling problems.

Compared with those on a single machine, not
much research has been done for the problem on parallel
machines. Cheng (Cheng, 1989) considers the problem
in which each machine must begin processing at time
zero, i.e., no idle time is allowed, and suggests a list
scheduling heuristic that minimizes the sum of the pen-
alties associated with common due-date assignment,
earliness and tardiness after generalizing the common
due-date setting method of Panwalkar et al. (1982).
Here, the list scheduling heuristic is similar to the earlier
algorithms of Sundararaghavan and Ahmed (1984), Hall
(1986) and Emmons (Emmons, 1987). Also, De et al.
(1991) consider the generalized problem without the zero
start time constraint and characterize the necessary con-
ditions for the optimal schedules, and later, De et al.
(1994) suggest a pseudo-polynomial time algorithm whose
complexity depends on the number of parallel machines
after proving that the generalized problem is NP-hard.
Diamond and Cheng (Diamond and Cheng, 2000) de-
velop another heuristic for the generalized problem with-
out the zero start time constraint and show that it is as-
ymptotically optimal as the number of jobs approaches
to the infinity. Xiao and Li (Xiao and Li, 2002) develop
a heuristic for the generalized problem without the zero
start time constraint and prove its absolute worst case
error bound, and Min and Cheng (Min and Cheng, 2006)
suggest a genetic algorithm for the generalized common

due-date assignment and scheduling problem. Recently,
Kim and Lee (2012) improved the algorithms of Xiao
and Li (2002) and Min and Cheng (2006), respectively.

As an extension of the previous articles, we consider
the parallel machine problem with sequence-dependent
setups that depend on the type of job just completed and
on the job to be processed. The objective is to minimize
the sum of the penalties associated with assigning the
common due-date, earliness and tardiness. The sequence-
dependent setup times, which make the scheduling prob-
lems much more complicated, are commonly found in
various manufacturing systems. For example, in the in-
jection molding process, only the mold change time is
required if the same material is used between two con-
secutive jobs, while the screw cleaning times are re-
quired when there is a change of material (Kim et al.,
2007). To the best of the authors’ knowledge, there is no
previous research on common due-date assignment and
scheduling on parallel machines with sequence-depen-
dent setup times.

As stated earlier, the problem considered here has
three decision variables: (a) determining the common-
due-date; (b) allocating jobs to parallel machines; and (c)
sequencing the jobs assigned to each machine. To repre-
sent the problem mathematically, a mixed integer pro-
gramming model is suggested in this study. Then, due to
the problem complexity, two heuristics, one with indi-
vidual sequence-dependent setup times and the other
with aggregated sequence-dependent setup times, are
suggested after analyzing the characteristics of the prob-
lem. Computational experiments were done on randomly
generated test instances, and the results are reported.

This paper is organized as follows. In the next sec-
tion, the problem is described in more detail with a mixed
integer programming model. Section 3 presents the heu-
ristic algorithms and computational results are reported
in Section 4. Finally, Section 5 gives concluding remarks
and discussion of future research.

2. PROBLEM DESCRIPTION

Before describing the problem in more details, we
present a general structure of parallel machine systems
in Figure 1, where ji and ki imply the i-th job and the
machine in which the i-th job is processed, respectively.
Note that each job has a single operation to be per-
formed on one of parallel machines. In general, the or-
dinary parallel machine scheduling problem has two
decision variables: (a) allocating jobs to parallel ma-
chines (denoted by ji ⎜⎜ki in Figure 1); and (b) sequenc-
ing the jobs assigned to each machine. After the job
allocations are done, the resulting problem can be de-
composed into single machine scheduling problems.

The problem considered in this paper can be briefly
described as follows: for a given set of jobs, the problem
is to determine the common due-date, the allocation of
jobs to machines and the sequence of the jobs assigned

Common Due-Date Assignment and Scheduling on Parallel Machines with Sequence-Dependent Setup Times
Vol 19, No 1, May 2013, pp.29-36, © 2013 KORMS 31

to each machine while considering the sequence-depen-
dent setup times for the objective of minimizing the pen-
alties associated with assigning the common due-date,
earliness and tardiness. It is assumed that the sequence-
dependent setup time, depending on the type of job just
completed and on the job to be processed, is determinis-
tic and given for each pair of jobs. Also, the earliness
(tardiness) penalty in the objective function is assumed
to be directly proportional to the amount of earliness
(tardiness).

Jn kn J2 k2 J1 k1

Machine 1

Machine 2

Machine m

•
•
•

|||| ||||||||• • •

Figure 1. Structure of the Parallel Machine Process

We consider a static and deterministic version of

the problem. That is, all jobs are ready for processing at
time zero, i.e., zero ready times. Also, it is assumed that
the job descriptors, such as processing times, setup times,
and penalties, etc., are deterministic and given in advance.
Other assumptions made for the problem are summa-
rized as follows: (a) each machine can process only one
job at a time; (b) once a job is determined to be proc-
essed on a machine, it will stay on the machine until its
completion, i.e., no job preemption; and (c) idle times
caused by machine breakdowns are not considered.

To describe the problem more clearly, a mixed in-
teger programming model is suggested. Note that the
model extends that of Balakrishnan et al. (1999) by ad-
ditionally representing the common due-date assignment.
The following notations are used in the formulation.

Parameters
ti the processing time of job i, i = 1, 2, …, n
sij the setup time required between two consecutive

jobs i and j
P1 the penalty associated with assigning the common

due-date
P2 the penalty associated with earliness
P3 the penalty associated with tardiness
L a large number

Decision variables
d the common due-date
xik = 1 if job i is assigned to machine k, and 0 otherwise
yij = 1 if job i directly precedes job j on the same ma-

chine, and 0 otherwise
Ci the completion time of job i
Ei the earliness of job i, i.e., max{0, d-Ci}
Ti the tardiness of job i, i.e., max{0, Ci-d}

Now, the mixed integer programming model is given
below.

[P] Minimize 1 2 31

{ }n
i ii

P d n P E P T
=

⋅ ⋅ + ⋅ + ⋅∑

i i iC d T E− = − for all i (1)
(2)i j ij ik jk i jiC C L y x x t s− + ⋅ + − − ≥ +

for all i, j and k (2)
(3)j i ij ik jk j ijC C L y x x t s− + ⋅ − − − ≥ +

for all i, j and k (3)
** 2ik ijjkk k

x x y
≠

+ + ≤∑ for all i, j and k (4)

1
1m

ikk
x

=
=∑ for all i (5)

0i i iC t s≥ + for all i (6)
{0, 1}ikx ∈ for all i and k (7)
{0, 1}ijy ∈ for all i and j (8)
0d ≥ (9)
0iE ≥ for all i (10)
0iT ≥ for all i (11)

The objective function denotes the sum of the pen-

alties that depend on the common due-date and the
completion time of each job. Constraint (1) specifies the
amounts of earliness and tardiness while ensuring that Ti
and Ei cannot be positive at the same time. Constraints
(2) and (3) establish the relationship between the com-
pletion times of jobs i and j assigned to the same ma-
chine. Using the binary variables yij and the large num-
ber L, these constraints enforce that there is sufficient
time between the completions of jobs i and j, based on
the order of jobs. Constraint (4) ensures that the job
precedence between jobs i and j is relevant only if both
jobs are assigned to the same machine. In other words,
yij is equal to zero (implying job j before job i) or one
(implying job i before job j) if both jobs i and j are as-
signed to the same machine, while it must equal to zero
if these jobs are assigned to different machines. Con-
straint (5) implies that each job must be assigned to one
machine and constraint (6) specifies the minimum com-
pletion time of each job, i.e., completion time of an arbi-
trary job should be larger than or equal to the sum of its
processing time and the initial setup time. Finally, con-
straints (7), (8), (9), (10) and (11) represent the condi-
tions of the decision variables.

The optimal solutions can be obtained by solving
the model (P) directly using a commercial integer pro-
gramming software package. However, it is not practical
because of excessive computation time. We can easily
see that the problem (P) is NP-hard since the problem
(P) is the generalization of the parallel machine problem
without the sequence-dependent setup times. Note that
the special case is already known to be NP-hard (De et
al., 1994).

3. SOLUTION ALGORITHMS

This section explains the two heuristics suggested

Kim, Yu, and Lee: Management Science and Financial Engineering
Vol 19, No 1, May 2013, pp.29-36, © 2013 KORMS 32

in this study, one with individual and the other with ag-
gregated sequence-dependent setup times. Before pre-
senting the algorithms, we first explain the method to
find the optimal common due-date.

3.1 Setting the Common Due-Date

The two propositions, adopted from Panwalkar et
al. (1982) for the single machine problem, can be ex-
tended to the parallel machine problem after the jobs are
sorted according to their completion times for a given job
schedule on parallel machines. Also, they are valid for
the single machine problem with sequence-dependent
setup times (Kim and Lee, 2009).

Proposition 1 implies that the common due-date
must coincide with the completion time of a job in a
given job sequence. In the proposition, the job sequence
S is specified by sorting the jobs in the non-decreasing
order of their completion times. The proof is omitted
here since they are straightforward even for the problem
on parallel machines with sequence-dependent setup
times.

Proposition 1: For any specified job sequence S on pa-
rallel machines, there exists an optimal common due-
date d that coincides with the completion time of one of
the jobs in S.

By differentiating the objective function with re-

spect to d and setting it equal to zero, we can obtain the
optimal common due-date. The detailed method is given
in Proposition 2. In the proposition, [k] denotes the in-
dex of the k-th job after sorting the jobs in the non-
decreasing order of their completion times.

Proposition 2: For any specified job sequence S, the
optimal common due-date is equal to C[k], where k is the
smallest integral value greater than or equal to n · (P3 –
P1)/(P2 + P3), where P1, P2 and P3 are the penalties as-
sociated with due-date assignment, earliness and tardi-
ness, respectively.

3.2 Heuristic Algorithms

Based on the method to set the common due-date,
we suggest two heuristics that consist of two phases:
obtaining an initial solution and improvement. Here, the
two heuristics are different in the method to obtain the
initial solution.

3.2.1 Individual Setup Heuristic

This heuristic, denoted by individual setup (IS) he-
uristic in this paper, obtains the initial solution by assig-
ning jobs to the positions according to positional weights.
Here, the positional weights are calculated using the
idea of Diamond and Cheng (2000) that consider the
parallel machine problem without sequence-dependent

setup times. More formally, two weight values accord-
ing to the characteristic of the h-th position on machine
k are calculated as follows (See Diamond and Cheng
(1994) for more details).

()1
2

3

1 if the position () is early

 otherwise,
kh

nP h P k, h
m

h P
λ

⎧ + − ⋅⎪= ⎨
⎪ ⋅⎩

where the position (h, k) is called early if the completion
time of the job assigned to the position is less than the
common due-date.

After calculating the positional weights, the first
job i1

* is selected with the following condition

*
1

, ,
arg min arg min{ } arg min{ }ji i ij

i U j U i j j U i j
i s t s

∈ ∈ ≠ ∈ ≠

⎧ ⎫= + +⎨ ⎬
⎩ ⎭

and then it is assigned to the position with the largest
positional weight, where U denotes the set of unsched-
uled jobs. Note that the first job is the one that gives the
minimum sum of the smallest setup time assignable be-
fore the job, its processing time, and the smallest setup
time assignable after the job. Then, the second job i2

*,
which is assigned to the position with the second largest
positional weight, is selected as follow. If the position
with the second largest positional weight is located be-
fore the common due-date, the job i2

* is selected as

*
1

*
2 ,

arg min{ }
j i

j U
i BP

∈
= ,

where BPji = sji + tj. Otherwise, the job i2

* is selected as

*
1

*
2 ,

arg min{ }
i j

j U
i AP

∈
= ,

where APij = sij + tj. In this way, the other jobs are se-
lected and assigned to the remaining positions in the
non-increasing order of the positional weight.

The improvement is done as follows. First, two
machines with the largest and the smallest objective
values are selected. Here, the objective value associated
with machine k is calculated as

2 3{ }

k

i i
i U

P E P T
∈

⋅ + ⋅∑ ,

where Uk denotes the set of jobs assigned to machine k
in the current schedule. Note that it is not needed to con-
sider the penalty for the common due-date, i.e. P1·d·
n, since it is a constant. Then, according to the numbers
of jobs assigned to the two machines, the following two
methods are repeatedly used until there is no further
improvement. Let NL and NS denote the numbers of jobs
assigned to the machines that have the largest and the
smallest objective value, respectively.

Common Due-Date Assignment and Scheduling on Parallel Machines with Sequence-Dependent Setup Times
Vol 19, No 1, May 2013, pp.29-36, © 2013 KORMS 33

Case 1: NL ≠ NS
In this case, the insertion method is used from the

first job (in sequence) assigned to the machine with the
largest objective value. More specifically, to balance the
workloads assigned to machines, a job assigned to the
machine with the largest objective value is removed
from the original place and then it is inserted to the best
position that gives better objective value on the other
machine. For a graphical description, see Figure 2(a) in
which the dashed arrows denote the possible insertions.
Finally, among all possible insertions, selected is the
one that gives the best solution.

Case 2: NL = NS
In this case, the interchange method is used by se-

lecting one job for each of the two machines, i.e., those
with the largest and the smallest objective values. First,
among those assigned to machine k with the largest ob-
jective value, the job i* is selected with the smallest
earliness penalty, i.e.,

* arg min{ }

k

i
i U

i E
∈

= .

Note that Uk was defined as the set of jobs assigned
to machine k in the current schedule. Then, the amount
of improvement is checked after interchanging job i*
with those assigned to the other machine with the small-
est objective value. For a graphical description, see Fig-
ure 2(b) in which the solid bi-directional arrows denote
the possible interchanges. If there is no improvement,
another job that has the smallest tardiness penalty is
selected on the machine with the largest objective value,
i.e.,

** arg min{ }

k

i
i U

i T
∈

= .

Finally, this is repeatedly done until there is not

further improvement.

(a) Insertion method

(b) Interchange method

Figure 2. Pictorial Descriptions of Insertion and
Interchange Methods

3.2.2 Aggregated Setup Heuristic

As stated earlier, the second heuristic, denoted by
the aggregated setup (AS) heuristic in this paper, is the
same as the first one except for the method to obtain the

initial solution (The initial solution is improved using
the interchange method explained earlier).

In the AS heuristic, the initial solution is obtained
by solving the relaxed problem in which sequence-
dependent setup times are aggregated and added to the
corresponding processing times. More formally, the
processing time of job j is set as

()
min { }j iji i j

t s
∀ ≠

+ .

To solve the relaxed problem without sequence-
dependent setup times, we use the two-phase algorithm
of Kim et al. (2012). More specifically, the two-phase
algorithm can be briefly explained as follows.

In the first phase, the positional weight for the h-th
position on machine k is calculated as

()1
2

3

1 if the position (,) is early

 otherwise,
kh

nP h P k h
m

h P
λ

⎧ + − ⋅⎪= ⎨
⎪ ⋅⎩

and the initial solution is obtained by matching the long-
est job to the position with the smallest positional wei-
ght, the second longest job to the position with the sec-
ond smallest positional weight, and so on. Here, if the
smallest positional weight occurs in the early form, the
corresponding job is assigned to the first possible posi-
tion. Otherwise, the job is assigned to the last possible
position. Then, the optimal common due-date d* is fixed
using Proposition 2.

In the second phase, the initial solution is improved
using the following two propositions. (See Kim and Lee
(2006) for their proofs.) Proposition 3 specifies the con-
dition that can improve a given solution when all tardy
jobs at two machines are interchanged at the same time
while maintaining the job sequence at each machine. In
the proposition given below, nT

k, sk and ti(l),k denote the
number of tardy jobs, the start time of the first tardy job,
and the processing time of the l-th tardy job on machine
k, respectively.

Proposition 3: For arbitrary two machines k1 and k2
with nT

k1 > nT
k2 and sk1 > sk2, if the following condition

holds,

{ }1

1 1 1(),1
max (1) (), 0

T
kn

k k i I kl
l s s t

=
− ⋅ − −∑

1 2 1 2 32 () ()T T
k k k kP n n s s P× < − ⋅ − ⋅

then interchanging all the tardy jobs on machines k1 and
k2 improves the current solution.

Proposition 4 specifies the condition that can im-

prove a given solution when the last tardy job at a ma-
chine is moved to the last position in sequence at an-
other machine. In the proposition given below, tlk and
Ck

max denote the processing time of the last job and the

Kim, Yu, and Lee: Management Science and Financial Engineering
Vol 19, No 1, May 2013, pp.29-36, © 2013 KORMS 34

maximum completion time on machine k, respectively.

Proposition 4: For arbitrary two machines k1 and k2, if

1 2 1

max max ,k k lkC C t− >

moving the last job on machine k1 to machine k2 im-
proves the current solution.

After improving the initial solution (for the relaxed

problem) using the above two propositions, the current
solution is improved further by changing the given job
sequence at each machine. First, the jobs assigned to
each machine are sorted in the non-increasing order of
their processing times. Second, according to the sorted
list, two new job sequences for the current machine are
generated as follows.

(a) If the total processing time of the early jobs (after

the job is assigned to the early position) is less
than or equal to the optimal common due-date d*,
the current job is assigned to the early possible
position. Otherwise, the current job is assigned to
the tardy possible position.

(b) If the total processing time of the tardy jobs (after
the job is assigned to the tardy position) is less
than or equal to (Ck

max-d*), the current job is as-
signed to the tardy possible position. Otherwise,
the current job is assigned to the early possible
position.

Third, for each job sequence at the current machine,

the early jobs are sorted in a non-increasing order of
their processing times while the tardy jobs are sorted in
a non-decreasing order of their processing times, which
results in the well-known V-shape job sequence. Then,
of the two job sequences, the better one is selected for
the current machine if it improves the current solution.

4. EXPERIMENTAL RESULTS

To test the performances of the two heuristics sug-
gested in this study, computational experiments were done
on a number of test instances and the results are reported
in this section. The performance measures used are: (a)
percentage deviations from the optimal solution values
for small-sized test instances; (b) the relative perform-
ance ratios for medium to large-sized test instances; and
(c) CPU seconds. Here, the optimal solutions for small-
sized test instances were obtained by solving the mixed
integer programming model (P) using CPLEX 10.1,
commercial integer programming software. Also, the
relative performance ratio of heuristic a for a problem is
defined as

[() /] 100(%),a best bestC C C− ⋅

where Ca is the objective value obtained from heuristic a
and Cbest is the best objective value for that problem
among those obtained from the two heuristics. The algo-
rithms and the program to generate integer programs
were coded in C and the tests were done on a personal
computer with a Pentium processor operating at 3.0
GHz clock speed.

For the test on small-sized problems, 90 instances
were generated, using the method of Kim and Lee (2009),
for each combination of three levels of the number of
machines (2, 3 and 4) and three levels of the number of
jobs (8, 9 and 10). The processing times were generated
from DU(5, 100), where DU(a, b) denotes the discrete
uniform distribution with range [a, b]. Also, the sequen-
ce-dependent setup times for all pairs of jobs were gen-
erated from DU(25, 75). Finally, the penalties associated
with common due-date assignment (P1), earliness (P2),
tardiness (P3) were generated from DU(1, 10), DU(P1,
P1+10) and DU(P1, P1+11), respectively. Here, the pen-
alties were generated in such a way that 0 < P1 ≤ P3
since the case with P1 > P3 has the optimal solution with
d = 0 and hence can be solved in polynomial time (Dia-
mond and Cheng, 2000). For the test on large-sized
problems, 120 instances were generated for each combi-
nation of three levels of the number of machines (4, 8
and 12) and six levels of the number of jobs (20, 40, 60,
80, 100 and 120).

The results for small-sized test instances are sum-
marized in Table 1 that shows the percentage gaps from
the optimal solution values and CPU seconds. It can be
seen from the table that the IS heuristic (considering
individual sequence-dependent setup times) is better
than the AS heuristic (aggregating sequence-dependent
setup times) because of its larger search space. In fact,
the gaps of the IS heuristic (AS heuristic) range from
5.2% (4.6%) to 9.1% (13.3%). The overall average gaps
of the IS and the AS heuristics were 7.2% and 9.2%,
respectively. Also, the average amounts of improvement
from the initial solutions were 10.8% and 10.6% for the
IS and the AS heuristics, which shows the effectiveness
of the improvement method suggested in this paper. In
the absolute sense, however, the gaps from the optimal
solution values are relatively large, which implies that it
may be needed to develop more efficient algorithms
after analyzing the properties of the problem, especially
those for the sequence-dependent setup times. Finally,
the two heuristics required very short computation times.
However, due to the complexity of the problem, CPLEX
required much longer computation times although it
gave optimal solutions.

Similar results, which can be seen from Table 2,
were obtained from the test on large-sized instances, i.e.,
the IS heuristic gives better solutions than the AS heu-
ristic. Also, the average amounts of improvement from
the initial solutions were 2.4% and 16.3% for the IS and
the AS heuristics, which implies that the IS heuristic
gives much better initial solutions than the AS heuristic.
Also, as in the test on small-sized instances, the two

Common Due-Date Assignment and Scheduling on Parallel Machines with Sequence-Dependent Setup Times
Vol 19, No 1, May 2013, pp.29-36, © 2013 KORMS 35

heuristics required very short computation times. In fact,
the heuristics gave solutions for the largest test instances
with 12 machines and 120 jobs within 0.6 seconds.

Table 1. Test Results for the Heuristics on Small-Sized

Test Instances

IS AS CPLEXNumber of
machines

Number
of jobs Gap1 CPU Gap CPU CPU

8 7.1 < 0.01* 5.2 < 0.01 37
9 5.2 < 0.01 4.6 < 0.01 232 2
10 5.5 < 0.01 10.6 < 0.01 1818
8 7.4 < 0.01 8.4 < 0.01 6
9 6.1 < 0.01 8.9 < 0.01 345 3
10 8.2 < 0.01 12.5 < 0.01 796
8 7.7 < 0.01 8.9 < 0.01 70
9 8.3 < 0.01 10.1 < 0.01 50 4
10 9.1 < 0.01 13.3 < 0.01 1118

1 average percentage deviations from optimal solution values
out of 10 test instances.

* average CPU second less than 0.0005s.

Table 2. Test Results for the Heuristics on Large-Sized
Test Instances

IS AS Number of
machines

Number
of jobs RPR1 CPU RPR CPU

20 2.2 0.01 8.1 0.01
40 2.2 0.03 7.2 0.01
60 2.4 0.09 6.7 0.07

4

80 2.0 0.28 5.4 0.23
40 0.3 0.02 8.0 0.01
60 0.8 0.08 6.4 0.03
80 0.5 0.18 6.8 0.08

8

100 1.7 0.36 5.8 0.21
60 1.4 0.08 7.5 0.02
80 0.1 0.16 8.6 0.05
100 1.0 0.30 7.2 0.14

12

120 1.8 0.56 8.9 0.29
1 average relative performance ratio out of 10 test instances.

5. CONCLUSIONS

This paper considered the problem of determining
the common due-date as well as the schedule on parallel
machines for the objective of minimizing the sum of
penalties associated with common due-date assignment,
earliness and penalties. As an extension of the previous
research, the sequence-dependent setup times were ex-
plicitly considered. Since the problem is known to be
NP-hard, we suggested two heuristic algorithms in
which an initial solution is obtained and then it is im-
proved. Computational experiments were carried out on
a number of test instances and the results showed that

the heuristic considering individual sequence-dependent
setup times is better than the heuristic with aggregating
sequence-dependent setup times. In addition, the abso-
lute performances of the two heuristics, i.e., gaps from
the optimal solution values, were shown for small-sized
test instances. Finally, the two heuristics were very fast
and hence can be used for practical problems.

This research can be extended in several ways.
First, the search heuristics, such as simulated annealing,
genetic algorithm, and tabu search, can be used to in-
crease the solution qualities although they may require
more computation time. Second, it is needed to extend
the problem by considering other due-date types, such as
distinct due-dates and generalized due-dates.

ACKNOWLEDGEMENT

This work was supported by the Korea Research
Foundation Grant funded by the Korean Government
(MOEHRD, Basic Research Promotion Fund) (KRF-
2007-331-D00547).

REFERENCES

Baker, K. R. and G. D. Scudder, “On the assignment of
optimal due-dates,” Journal of the Operational Re-
search Society 40 (1989), 93-95.

Baker, K. R. and G. D. Scudder, “Sequencing with earli-
ness and tardiness penalties: a review,” Operations
Research 38 (1990), 22-36.

Balakrishnan, N., J. J. Kanet, and V. Sridharan, “Early/
tardy scheduling with sequence dependent setups
on uniform parallel machines,” Computers and Op-
erations Research 26 (1999), pp. 127-141.

Biskup, D. and H. Jahnke, “Common due-date assign-
ment for scheduling on a single machine with
jointly reducible processing times,” International
Journal of Production Economics 69 (2001), 317-
322.

Chen, Z. L., “Scheduling and common due-date assign-
ment with earliness-tardiness penalties and batch
delivery costs,” European Journal of Operational
Research 93, (1996), 49-60.

Cheng, T. C. E. and M. Y. Kovalyov, “Bath scheduling
and common due-date assignment on a single ma-
chine,” Discrete Applied Mathematics 70 (1996),
231-245.

Cheng, T. C. E., “A heuristic for common due-date as-
signment and job scheduling on parallel machines,”
Journal of the Operational Research Society 40
(1989), 1129-1135.

Cheng, T. C. E., “A note on the common due-date as-
signment problem,” Journal of the Operational Re-

Kim, Yu, and Lee: Management Science and Financial Engineering
Vol 19, No 1, May 2013, pp.29-36, © 2013 KORMS 36

search Society 37 (1986), 1089-1091.
Cheng, T. C. E., “Common due-date assignment and

scheduling for a single processor to minimize the
number of tardy jobs,” Engineering Optimization
16 (1990), 129-136.

Cheng, T. C. E., Z. L. Chen, and N. V. Shakhlevich,
“Common due-date assignment and scheduling
with ready times,” Computers and Operations Re-
search 29 (2002), 1957-1967.

De, P., J. B. Ghosh, and C. E. Wells, “Due-date assign-
ment and early/tardy scheduling on identical paral-
lel machines,” Naval Research Logistics 41 (1994),
17-32.

De, P., J. B. Ghosh, and C. E. Wells, “On the multiple-
machine extension to a common due date assign-
ment and scheduling problem,” Journal of the Op-
erational Research Society 42 (1991), 419-422.

Diamond, J. E. and T. C. E. Cheng, “Error bound for
common due-date assignment and job scheduling
on parallel machines,” IIE Tranactions 32 (2000),
445-448.

Dvir, S. and S. George, “Two due-date assignment prob-
lems in scheduling a single machine,” Operations
Research Letters 34 (2006), 683-691.

Emmons, H., “Scheduling to a common due date on
parallel uniform processors,” Naval Research Lo-
gistics 34 (1987), 803-810.

Gordon, V., J. M. Proth, and C. Chu, “A survey of the
state-of-the-art of the common due-date assignment
and scheduling research,” European Journal of
Operational Research 139 (2002), 1-25.

Hall, N. G., “Scheduling problems with generalized due-
dates,” IIE Transactions 18 (1986), 220-222.

Hall, N. G., “Single and multiple processor models for
minimizing completion variances,” Naval Research
Logistics 33 (1986), 49-54.

Kim, J.-G. and D.-H. Lee, “Algorithms for common
due-date assignment and sequencing in a single
machine with sequence-dependent setup times,”
Journal of the Operational Research Society 60
(2009), 1264-1272.

Kim, J.-G., J.-S. Kim, and D.-H. Lee, “Common due-
date assignment and sequencing with sequence-
dependent setup times: a case study on a paper re-

manufacturing system,” Management Science and
Financial Engineering 18 (2012), 1-12.

Kim, J-.G., J.-S. Kim, and D-.H. Lee, “Fast and meta-
heuristics for common due-date assignment and
scheduling on parallel machines,” International
Journal of Production Research 60 (2012), 6040-
6057.

Kim, S.-I., H-.S. Choi, and D-.H. Lee, “Scheduling al-
gorithms for parallel machines with sequence-
dependent setup and distinct ready times: minimiz-
ing total tardiness,” Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of Engi-
neering Manufacture 221 (2007), 1087-1096.

Min, L. and W. Cheng, “Genetic algorithms for the op-
timal common due-date assignment and the optimal
scheduling policy in parallel machine earliness/
tardiness scheduling problems,” Robotics and Com-
puter-Integrated Manufacturing 22 (2006), 279-
287.

Ng, C. T. D., T. C. E. Cheng, M. Y. Kovalyov, and S. S.
Lam, “Single machine scheduling with a variable
common due-date and resource-dependent process-
ing times,” Computers and Operations Research
30 (2003), 1173-1185.

Panwalkar, S. S., M. L. Smith, and A. Seidmann, “Com-
mon due-date assignment to minimize total penalty
for the one machine scheduling problem,” Opera-
tions. Research 30 (1982), 391-399.

Quaddus, M. A., “A generalized model of optimal due-
date assignment by linear programming,” Journal
of the Operational Research Society 38 (1987),
353-359.

Sundararaghavan, P. S. and M. U. Ahmed, “Minimizing
the sum of absolute lateness in single-machine and
multi-machine scheduling,” Naval Research Logis-
tics 31 (1984), 325-333.

Xia, Y., B. Chen and J. Yue, “Job sequencing and due-
date assignment in a single machine shop with un-
certain processing times,” European Journal of the
Operational Research 184 (2008), 63-75.

Xiao, W. Q. and C. L. Li, “Approximation algorithms
for common due-date assignment and job schedul-
ing on parallel machines,” IIE Transactions 34
(2002), 467-477.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

