
IEMS Vol. 4, No. 1, pp. 1-22, June 2005.

Heuristics for Job Shop Scheduling Problems
with Progressive Weighted Tardiness Penalties and
Inter-machine Overlapping Sequence-dependent

Setup Times

Chatpon Mongkalig†
Industrial Engineering and Management Program, School of Advanced Technologies

328 Pichai Road, Dusit, Bangkok 10300 Thailand
Tel: +66-9-079-6000, +66-9-128-0001, E-mail: chatpon@yahoo.com

Mario T. Tabucanon

Industrial Engineering and Management Program, School of Advanced Technologies
Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand

Tel: +66-2-524-5002, E-mail: mtt@ait.ac.th, provost@ait.ac.th

Nguyen Van Hop
Industrial Engineering Program, Sirindhorn International Institute of Technology

Thammasat University, Pathumthani 12121, Thailand

Abstract. This paper presents new scheduling heuristics, namely Mean Progressive Weighted Tardiness Esti-
mator (MPWT) Heuristic Method and modified priority rules with sequence-dependent setup times consi-
deration. These are designed to solve job shop scheduling problems with new performance measures – pro-
gressive weighted tardiness penalties. More realistic constraints, which are inter-machine overlapping sequence-
dependent setup times, are considered. In real production environments, inter-machine overlapping sequence-
dependent setups are significant. Therefore, modified scheduling generation algorithms of active and nondelay
schedules for job shop problems with inter-machine overlapping sequence-dependent setup times are proposed
in this paper. In addition, new customer-based measures of performance, which are total earliness and pro-
gressive weighted tardiness, and total progressive weighted tardiness, are proposed. The objective of the first
experiment is to compare the proposed priority rules with the consideration of sequence-dependent setup times
and the standard priority rules without setup times consideration. The results indicate that the proposed priority
rules with setup times consideration are superior to the standard priority rules without the consideration of setup
times. From the second experiment and the third experiment to compare the proposed MPWT heuristic approach
with the efficient priority rules with setup times consideration, the MPWT heuristic method is significantly
superior to the Batched Apparent Tardiness Cost with Sequence-dependent Setups (BATCS) rule, and other
priority rules based on total earliness and progressive weighted tardiness, and total earliness and tardiness.

Keywords: job shop scheduling problems, progressive weighted tardiness penalties, inter-machine overlapping

setup times, sequence-dependent setup times

1. INTRODUCTION

The objective of this paper is to solve job shop
scheduling problems with new constraints, which are in-
ter-machine overlapping setup times. To reduce machine

idle time, machine setups of successive operations of the
same batch of parts are initiated simultaneously. For
instance, let the batch size of a part be 100 and let the
manufacturing processes of this part require two opera-
tions. The machine setup times of the second operation

† : Corresponding Author

2 Chatpon Mongkalig·Mario T. Tabucanon·Nguyen Van Hop

can be initiated after only a fraction of the 100 parts has
completed the first operation. These new realistic con-
straints in the job shop scheduling problems are called
“inter-machine overlapping setup times”. For solving the
realistic job shop scheduling problems, the inter-machine
overlapping setup times are sequence-dependent. Pro-
blems of sequence-dependent setup times often arise in
production settings where the setup times are significant.
For instance, at a production facility where paint is manu-
factured, the setup time incurred for cleaning machines
depends on both the color being removed and the color
for which it is being prepared. Similarly, in the plastic
industry (Franca et al. 1996), items of different colors are
typically assigned to different extrusion machines. When
a color change is required, it takes a certain amount of
time until the extruded plastic reaches the desired color.
The setup times in this case depend on the sequence of
jobs. Such problems are also common in the soft drink
beverage industry where the manufacturing lines have to
go through major setups when changing from filling glass
bottles to soda cans. Similar examples can be found in the
chemical and automotive parts manufacturing industries.

New measures of performance, which are total pro-
gressive weighted tardiness, and total earliness and pro-
gressssive weighted tardiness, are proposed in this paper.
The new performance measures focus on customer satis-
faction. The repetitive tardiness problems of the same
customer lead to progressive weighted tardiness penalties.
This issue will be addressed in section 4, and used in
experiments in Section 7, Section 9 and Section 10. The
objective of the first experiment in Section 7 is to deter-
mine the effect of sequence-dependent setup time consi-
deration in the priority rules. The second experiment, to
compare the Mean Progressive Weighted Tardiness Esti-
mator (MPWT) heuristic method with BATCS, SMST
and LWKRS, is conducted in Section 9. In Section 10, the
third experiment is conducted to compare the MPWT
heuristic method with other efficient heuristics based on
the real scheduling data of a case study. The conclusions
are drawn in Section 11.

2. LITERATURE REVIEW

Most of the research work performed on machine
scheduling has not considered sequence-dependent setup
times between jobs. In such cases, the setup times are
assumed to be sequence independent and are considered
to be part of the job direct processing times. Moreover, no
research regarding job shop scheduling problems with
new inter-machine overlapping setup time constraints, has
been found in the literature. These production scheduling
problems without considering inter-machine overlapping
sequence-dependent setups could lead to unrealistic job
shop scheduling problems.

Some research has been done that accounts for
sequence dependency of job setup times along with due
date considerations. Firstly, researchers paid attention to
single-machine problems with sequence-dependent setups
(see Picard and Queyranne 1978, Monma and Potts 1989,
Uzsoy 1991, and Uzsoy 1992). The two problems of
minimizing the maximum completion time for a sequence
of jobs, and minimizing the maximum tardiness for jobs
with a common due date, in the presence of sequence
dependence, are equivalent to the famous travelling sa-
lesman problem (TSP). Monma and Potts (1989) exa-
mined various scheduling models that included batch
setup times, where the setup times between jobs in the
same batch were considered to be zero. Dynamic pro-
gramming algorithms were used for the single machine
problem, where the objective was to minimize the maxi-
mum completion time, maximum lateness, total weighted
completion time and the number of tardy jobs. Picard and
Queyranne (1978) modelled the problem of scheduling
jobs with setup times on a single machine as a time-
dependent travelling salesman problem. They used a
branch and bound algorithm for this model. Uzsoy et al.
(1991) discussed minimizing the maximum lateness in
the presence of precedence constraints and sequence
dependency of jobs. Each job was considered to have its
own due date. A neighborhood search algorithm that
obtained local optimal solutions was presented along with
a branch and bound algorithm to obtain optimal solutions.
In a later paper, Uzsoy et al. (1992) examined the pro-
blems of minimizing maximum lateness with dynamic
arrivals and minimizing the number of tardy jobs in the
presence of sequence-dependent setup times between jobs.

Sequence-dependent setup times have been addres-
sed in parallel machine problems (see Dearing and
Anderson 1984, Sumichrast and Baker 1987, Monma and
Potts 1989, Franca et al. 1996, Kurz and Askin 2001).
Dearing and Anderson (1984) studied the problem of
scheduling jobs with sequence-dependent setup times on
identical parallel machines, where the objective was to
minimize the total setup cost. They developed an integer
linear programming model and solved it as an LP with
rounding procedures to attain integer solutions. Sumi-
chrast and Baker (1987) improved the quality of these
solutions by implementing a heuristic procedure that
solved a series of 0-1 integer subproblems. The models
formulated by Dearing and Anderson, and Sumichrast and
Baker allowed jobs to be split among machines. Monma
and Potts (1989) studied the parallel machine problem
with preemption for sequence dependency of job setup
times, where the objectives were minimizing maximum
completion time, maximum lateness and number of tardy
jobs, and showed that all these problems are NP-hard.
Franca et al. (1996) considered the problem of scheduling
jobs with sequence-dependent setup times on identical
parallel machines where the objective was to minimize

 Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine overlapping Sequence-dependent Setup Times 3

the makespan. They obtained near optimal solutions for
this problem using heuristics. The makespan minimiza-
tion problem of parallel machines with sequence-depen-
dent setup times and possibly non-zero ready times was
solved by Kurz and Askin (2001) using an integer pro-
gramming approach.

In job shop scheduling problems with sequence-
dependent setup times, exact algorithms, considered with
many constraints, consume too much computational time,
so it is more appropriate to use heuristics. Apparent Tar-
diness Cost (ATC) is developed by Vepsalainen and Mor-
ton (1987). The slack of ATC is local resource constrain-
ted slack which takes into account the waiting time on
downstream machines, and the decay function for the
weight/processing time ratio is exponential rather than
linear. Several generalizations of the ATC rule have been
developed to take sequence-dependent setup times into
account (Pinedo 1995, Jeong and Kim 1998). The Ap-
parent Tardiness Cost with Sequence-dependent Setups
(ATCS) rule was proposed to minimize the sum of the
weighted tardiness with consideration of sequence-de-
pendent setup times. This implies that the priority of any
job j depends on the job just completed on the machine
just freed. It is obvious that the ATCS rule combines the
WSPT and SLACK or MS rules in a single priority index.
The rule calculates the index of job j succeeding job l at
time t has competed its processing on the machine as

()
1 2

max ,0
() exp expj jj lj

lj
j avg avg

d p tw s
ATCS t

p k p k s

− −
= − −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (1)

where pj is the processing time of job j, dj is the due date
of job j, wj is the weight or tardiness penalty of job j, pavg
is the average of the processing times of jobs remaining to
be scheduled, slj is the sequence-dependent setup time
dependent on both the preceding job l and the succeeding
job j, savg is the average of the setup times of jobs
remaining to be scheduled, k1 is the due date related
scaling parameter, and k2 is the setup time related scaling
parameter. The apparent tardiness cost based rules have
been presented in the papers of Jayamohan and Rajendran
(2000), Thiagarajan and Rajendran (2003), and Balasub-
ramanian, Monch, Fowler and Pfund (2004). Balasub-
ramanian et al. (2004) recently presented the batched ap-
parent tardiness cost (BATC). The jobs in each family are
ordered in decreasing order of their ATC indices, and a
batch of each customer is formed per family. In order to
schedule one of these, the batched apparent tardiness cost
(BATC) rule is used: at time t, for all the batches the
following index is calculated

()max ,0
exp

xj

j jj
xj

j B j avg

d p tw
BATC

p k p∈

− −
= −

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ (2)

where BATCxj is the BATC index for batch x of family j.

The batch with the highest BATC index is scheduled. In
the paper of Balasubramanian et al. (2004), it was obser-
ved that the BATC rule provided a good solution in a
relatively short amount of time even for the large-sized
problems.

The BATC rule in the paper of Balasubramanian et
al. (2004) has been generalized to be the batched apparent
tardiness cost with sequence-dependent setups (BATCS)
as follows.

()
()

1 2

max , 0
exp exp

xj

j j j lj

l xj
j B j avg avg

w d p t s
BATCS

p k p k s∈

− −
= − −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ (3)

The BATCS rule is used in the experiment to com-
pare with the new MPWT heuristic method in Section 9
and Section 10.

3. PROBLEM STATEMENT

In this paper, job shop scheduling problems with
total earliness and progressive weighted tardiness and
inter-machine overlapping sequence-dependent setups are
considered. The following questions arise:
● According to the more complex production environ-

ment, when the inter-machine overlapping sequence-
dependent setups have to be considered in the job shop
scheduling problems and the exact algorithm takes too
much computational time to solve the problems, prio-
rity rules should be used. In the past, standard efficient
priority rules – SPT (Shortest Processing Time), STPT
(Shortest Total Processing Time), MWKR (Most Work
Remaining) rules and others included the setup times in
the direct processing times. When the inter-machine
overlapping sequence-dependent setup times are signi-
ficant and have to be taken into account, the modified
standard priority rules are proposed in this paper. What
are the experimental results when these proposed
modified priority rules with setup times consideration
are compared with the classical priority rules without
consideration of setup times?

● How can we solve the new performance measures, which
are progressive weighted tardiness penalties, effecti-
vely (with the lower values of the new measures of
performance compared with other heuristics) and effi-
ciently (with less computational time) in more compli-
cated problems when inter-machine overlapping se-
quence-dependent setups are considered? In other words,
a new scheduling heuristic method should be develo-
ped to determine a complete schedule with the lowest
value of the new performance measure.

This paper proposes new performance measures as
follows: (i) total earliness and progressive weighted tar-
diness and (ii) total progressive weighted tardiness. The
new performance measures have emphasis on customer
satisfaction.

4 Chatpon Mongkalig·Mario T. Tabucanon·Nguyen Van Hop

4. TOTAL EARLINESS AND PROGRE-
SSIVE WEIGHTED TARDINESS: A NEW
MEA-SURE OF PERFORMANCE

Total earliness and progressive weighted tardiness is
a new customer-based measure of performance. The re-
petitive penalties increase at a progressive rate, depending
on how many times late delivery of finished goods to
each customer occurs. In practice, when a manufacturer
receives a customer order, there is a contract stipulating
the desired types of products separated in batches, the due
date of each batch, and the tardiness penalty. In a Just-In-
Time production system, the customer has emphasis on
tardiness problem. The reason is that it leads to a cust-
omer’s material shortage problem, and has an effect on
customer’s tardiness problem. Therefore, the customer
often specifies the progressive tardiness penalties. Altho-
ugh the progressive rates of progressive weighted tar-
diness penalties of the different customers are different;
practically in most contracts with the same customer, con-
stant progressive rates are stipulated in order to make the
contracts not too complicated to understand and to reduce
the complexity of the penalty computation. Therefore, the
progressive rate of job for the same customer is assumed
to be constant. In each job order of the same customer, the
set of jobs is separated into several work pieces, each of
which has its due date and associated penalty. The new
performance measure based on the progressive weighted
tardiness is stated as follows.

The penalty cost for the first time a job belonging to
the same customer is tardy, is:

{ }
1
() max 0,

ij ij ij
f S c dβ= − or

1
()

ij ij
f S Tβ= (4)

where
cij = completion time of job j of customer i,
dij = due date of job j of customer i,
Ri = constant progressive tardiness rate of customer

i (the progressive penalty rate is greater or
equal to zero, and if the progressive penalty
rate is equal to zero, the tardiness penalty of a
job for the same customer is not increased;
otherwise, it is increased by Ri *100% when
jobs for the same customer are repeatedly
late),

Tij = tardiness of job j of customer i,
and ijβ = unit tardiness penalty for job j of customer i.

An amount of weighted tardiness penalty f2(S) is the

second tardy job for the same customer. Hence, at a
constant progressive tardiness penalty rate of Ri per time,
the second late job for the same customer i, which causes
the tardiness penalty increased by Ri *100%, will have the
progressive weighted tardiness formulated as follows:

2 1 1() () () * if S f S f S R= + (5)

[]2 1() () 1 if S f S R= + (6)

At the third time of tardiness for the same customer,
the amount of penalty accumulated,

3
()f S , will be equal

to the amount accumulated after the second time of
tardiness plus the additional penalty Ri*100% from the
second time. Thus:

3 2 2() () () * if S f S f S R= + (7)

 [] []1 1() 1 () 1 *i if s R f s R R= + + + (8)

[]2

3 1
() () 1

i
f S f s R= + (9)

[]2

3
() 1

ij ij i
f S T Rβ= + (10)

It is evident, by mathematical induction, that the for-
mula can be generalized for n times of tardiness as:

[] 1

1() () 1 n

nf S f s R −
= + = [] 11 n

ij ij iT Rβ −
+ (11)

Hence, the total progressive weighted tardiness is:

[] 1() 1 n

ij ij i
i j

F S T Rβ −
= +∑∑ (12)

Therefore, the objective function, which is total
earliness and weighted progressive tardiness can be stated
as:

Min

[]()-1() 1 n

ij ij ij i
i j

H S E T Rβ= + +∑∑ (13)

To illustrate the calculation steps of the total earli-ess
and progressive weighted tardiness, consider the ten-job,
three-customer, five-machine problem described in Table
1 and Table 2. For example, the beginning time of the
scheduling period is 1 November 2003. The Gantt chart,
which is the graphic result of the complete schedule, is
shown in Figure 1.

Table 1. Job details of the numerical example

Job
Name

Due
Time Customer

Weight or
Tardiness
Penalty

Progressive
Rate

JOB1 08:00 3 1 0.473
JOB2 09:00 1 5 0.7107
JOB3 09:00 1 10 0.7107
JOB4 08:30 2 6 0.9201
JOB5 08:30 2 4 0.9201
JOB6 08:00 3 9 0.473
JOB7 09:00 1 3 0.7107
JOB8 09:00 1 7 0.7107
JOB9 08:30 2 2 0.9201
JOB10 08:00 3 8 0.473

 Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine overlapping Sequence-dependent Setup Times 5

Table 2. Complete schedule – the output of the numerical
example

Customer
Name

Job
Name

Machine
ID Due Time Job Completion

Time
1 JOB2 MCID3 09:00 1/11/2003 9:00
1 JOB8 MCID1 09:00 1/11/2003 9:35
1 JOB3 MCID5 09:00 1/11/2003 10:33
1 JOB7 MCID3 09:00 1/11/2003 10:59
2 JOB5 MCID5 08:30 1/11/2003 9:10
2 JOB4 MCID5 08:30 1/11/2003 10:06
2 JOB9 MCID5 08:30 1/11/2003 10:47
3 JOB10 MCID1 08:00 1/11/2003 10:12
3 JOB6 MCID4 08:00 1/11/2003 10:30
3 JOB1 MCID1 08:00 1/11/2003 11:07

Figure 1. Gantt chart illustrating the complete schedule of

the numerical example

The steps of the calculation of the total earliness and
progressive weighted tardiness are presented as follows.

For CUSTOMER 1,
- Job 2 is not a tardy job.

Due Date = 01-Nov-2003 09:00, Job Completion
Time = 01 Nov-2003 09:00

- Job 8 is the first tardy job of CUSTOMER 1.
Due Date =01-Nov-2003 09:00, Job Completion
Time = 01-Nov-2003 09:35

n = 1, Progressive Rate = 0.7107
Weight or Tardiness Penalty = 7, Tardiness = 35
Progressive Weighted Tardiness =35*7 = 245

- Job 3 is the second tardy job of CUSTOMER 1.
Due Date =01-Nov-2003 09:00, Job Completion
Time = 01-Nov-2003 10:33

n = 2, Progressive Rate = 0.7107, Tardiness = 93 minutes
Weight or Tardiness Penalty = 10
Progressive Weighted Tardiness = 93*10*(1

+ 0.7107)2-1 = 1590.951
- Job 7 is the third tardy job of CUSTOMER 1.

Due Date =01-Nov-2003 09:00, Job Completion
Time = 01-Nov-2003 10:59

n = 3, Progressive Rate = 0.7107,
Tardiness = 119 minutes
Weight or Tardiness Penalty = 3
Progressive Weighted Tardiness
= 119*3*(1+0.7107)3-1 = 1044.759

For CUSTOMER 2,
- Job 5 is the first tardy job of CUSTOMER 2.

Due Date = 01-Nov-2003 2001 08:30,
Job Completion
Time = 01-Nov-2003 09:10

n = 1, Progressive Rate = 0.9201, Tardiness = 40 minutes
Weight or Tardiness Penalty = 4
Progressive Weighted Tardiness = 160

- Job 4 is the second tardy job of CUSTOMER 2.
Due Date =01-Nov-2003 08:30, Job Completion
Time =01-Nov-2003 10:06

n = 2, Progressive Rate = 0.9201, Tardiness = 96 minutes
Weight or Tardiness Penalty = 6
Progressive Weighted Tardiness
= 96*6*(1+0.9201)2-1 = 1105.978

- Job 9 is the third tardy job of CUSTOMER 2.
Due Date =01-Nov-2003 08:30, Job Completion
Time = 01-Nov-2003 10:47

n = 3, Progressive Rate = 0.9201,
Weight or Tardiness Penalty = 2
Progressive Weighted Tardiness = 1010.179

For CUSTOMER 3,
- Job 10 is the first tardy job of CUSTOMER 3.

Due Date =01-Nov-2003 08:00, Job Completion
Time = 01-Nov-2003 10:12

n = 1, Progressive Rate = 0.473
Weight or Tardiness Penalty = 8
Progressive Weighted Tardiness = 1056

- Job 6 is the second tardy job of CUSTOMER 3.
Due Date =01-Nov-2003 08:00, Job Completion
Time = 01-Nov-2003 10:30

n = 2, Progressive Rate = 0.473
Tardiness Penalty Weight = 9
Progressive Weighted Tardiness = 1988.55

- Job 1 is the third tardy job of CUSTOMER 3.
Due Date =01-Nov-2003 08:00, Job Completion
Time = 01-Nov-2003 11:07

n = 3, Progressive Rate = 0.473, Tardiness = 187 minutes
Weight or Tardiness Penalty = 1
Progressive Weighted Tardiness
= 187*1*(1+0.473)3-1 = 405.739323

The Total Progressive Weighted Tardiness = 245 +

1590.951 + 1044.759 + 160 + 1105.98 + 1010.18 + 1056
+ 1988.55 + 405.74 = 8607.16. Since there is no early job,
total earliness = 0, the total earliness and progressive wei-
ghted tardiness is equal to 8,607.16.

5. INTER-MACHINE OVERLAPPING
SEQUENCE-DEPENDENT SETUP TIMES

The new characteristic of job shop scheduling pro-
posed in this paper is inter-machine overlapping sequen-

6 Chatpon Mongkalig·Mario T. Tabucanon·Nguyen Van Hop

ce-dependent setup time of a job. In this case, the job is
considered as a batch of n parts. To reduce machine idle
time and job flow time, machine setups of successive
operations of the same batch of parts are initiated after
few parts of the same batch in the preceding operation
have been finished. Inter-machine overlapping sequence-
dependent setup times are defined as the amount of time
between the earliest time required to start inter-machine
overlapping setup, which follows the precedence constra-
ints of job direct processing times and the capacity con-
straints, and the end of the inter-machine overlapping
setup. Let job (i, j, k) be the minimum transport batch of
operation j of product type i on machine k, and it cannot
be separated into smaller batches, so the precedence con-
straints are adopted. Therefore, the job direct processing
times of the minimum transport batch cannot be overlap-
ped, and only setup times can be overlapped. Normally,
the “batch” and “job” that are mentioned in this paper
mean the minimum transport batch. There are two cases,
as shown below:

Case A. When the batch direct processing time of the
preceding operation is shorter than the sequence-depen-
dent setup time of the succeeding operation. The machine
setup of the succeeding operation can start as soon as one
part of the same batch in the preceding operation is
finished (direct processing time of one part is assumed to
be much smaller than direct processing time of the mini-
mum transport batch). Therefore, the earliest be-ginning
time of machine setup is given by:

Inter-machine Overlapping Start Setup Time for the
succeeding operation = Finish Setup Time for the prece-
ding operation.

Case B. When the batch direct processing time of the
preceding operation is longer than the sequence-depen-
dent setup time of the succeeding operation; due to the
precedence constraints of the minimum transport batch,
which is called “job”, direct processing times cannot be
overlapped. Thus, the earliest beginning time of machine
setup is given by:

Inter-machine overlapping Start Setup Time for the
succeeding operation = Non-intermachine overlapping
Earliest Start Setup Time – Setup Time.

These two cases are described in Figure 2.

Figure 2. Gantt chart of the inter-machine overlapping

sequence-dependent setup time in Case A and
Case B

The calculation steps are as follows.
Step1 Find the Start Setup Time according to precedence

constraints. Find the Start Setup Time, which is the
beginning of non-intermachine overlapping setup
time, by comparing the finish time of job i and the
finish time of the machine (the time machine status
is changed from busy to idle), which job i works
on. If the finish time of job i is greater than the
finish time of the machine that job i works on, then
set Start Setup Time = Finish time of job i, else set
Start Setup Time = Finish time of the machine that
job i works on.

Step 2 Determine the inter-machine overlapping Start Setup
Time. Determine Setup Time for the considered
schedulable operation of job i from the sequence-
dependent setup time database. Calculate inter-ma-
chine overlapping Start Setup Time = non-inter-
machine overlapping Start Setup Time – Setup
Time. Find the Finish Setup Time of the preceding
operation of job i.

Step 3 Compare Start Setup Time with Finish Setup Time
of the preceding operation of job i. Compare inter-
machine overlapping Start Setup Time and Fini-sh
Setup Time of the preceding operation of job i. If
Start Setup Time is less than Finish Setup Time of
the preceding operation of job i, then set Start
Setup Time = Finish Setup Time of the preceding
operation of job i.

Step 4 Determine the finish time of inter-machine overla-
pping setups. Determine the finish time of inter-
machine overlapping setups by comparing between
Start Setup Time and Finish time of the preceding
operation of job i subtracted by Setup time. If Start
Setup Time is less than Finish time of the pre-
ceding operation subtracted by Setup time, then set
Start Setup Time = Finish time of the preceding
opera-tion – Setup time.

Step 5 Check machine capacity constraints. Due to machine
capacity constraints, if there are some jobs still on
the machine, the batch inter-machine overlapping
setups cannot begin. Therefore, the machine capa-
city constraints are checked by comparing Start
Setup Time with Finish time of the machine that
job i works on. If inter-machine overlapping Start
Setup Time is less than Finish time of machine
that job i works on, then set Start Setup Time =
Finish time of the machine that job i works on.

The numerical examples for Case A and Case B,

illustrated in Figure 2, are as follows.

Case A. There are three operations of the red job

(job 3). Consider the second operation of the red job.
Let Sequence-dependent Setup Time of the second

operation of the red job = 42 minutes and Non-inter-

Case A : job 3

Case B : job 1

 Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine overlapping Sequence-dependent Setup Times 7

machine overlapping Start Setup Time = 1 February 2004
8:28 a.m.

Start Setup Time = Non-intermachine overlapping
Start Setup Time – Setup Time.

Start Setup Time = 1 February 2004 8:28 a.m. –
42 minutes = 1 February 2004 7:46 a.m.

Finish Setup Time for the preceding operation (the
first operation of the red job) = 1 February 2004 8:10 a.m.

Start Setup Time for the second operation of the red
job is earlier than Finish Setup Time for the preceding
operation (the first operation of the red job), then set Start
Setup Time = Finish Setup Time for the preceding
operation = 1 February 2004 8:10 a.m.

Therefore, the end of setup time for the second
operation is 1 February 2004 8:52 a.m. After checking the
capacity constraints, the inter-machine overlapping se-
quence-dependent setup starts at 8:10 a.m. and finishes at
8:52 a.m.

Case B. There are two operations of the yellow job
(job 1). Consider the second operation of the yellow job.

Let Sequence-dependent Setup time of the second
operation of the yellow job = 32 minutes and Non-
intermachine overlapping Start Setup Time = 1 February
2004 10:44 a.m.

Start Setup Time = Non-intermachine overlapping
Start Setup Time – Setup Time.

Start Setup Time = 1 February 2004 10:44 a.m. –
32 minutes = 1 February 2004 10:12 a.m.

Finish Setup Time for the preceding operation (the
first operation of the yellow job) = 1 February 2004 8:41
a.m.

Start Setup Time for the second operation of the
yellow job is not earlier than Finish Setup Time for the
preceding operation (the first operation of the yellow job),
then Start Setup Time for the second operation is 1
February 2004 10:12 a.m.

Therefore, the end of setup time for the second
operation is 1 February 2004 10:44 a.m. After checking
the capacity constraints, the inter-machine overlapping
sequence-dependent setup starts at 10:12 a.m. and fini-
shes at 10:44 a.m.

6. MODIFIED PRIORITY RULES WITH
SEQUENCE-DEPENDENT SETUP
TIMES

When the inter-machine overlapping sequence-de-
pendent setup times are significant, the standard priority
rules should be modified. In this paper, we propose five
modified priority rules. The details and numerical exam-
ples of the five modified priority rules generated by non-
delay scheduling algorithm are as follows.

Consider the three-job, three operation, three-ma-
chine problem shown in Tables 3, 4, 5, 6, and 7. Let the

beginning time of job shop scheduling be 01 February
2004 8:00 a.m.

Table 3. Routing table of the numerical example

Job Operation 1 Operation 2 Operation 3
1 Machine 3 Machine 2 Machine 1
2 Machine 2 Machine 3 Machine 1
3 Machine 1 Machine 2 Machine 3

Table 4. Processing times table of the numerical example

Job Processing T1 Processing T2 Processing T3
1 3.9 7.81 21.06
2 3.38 29.87 1.99
3 2.94 12.29 3.19

Table 5. Sequence-dependent setup times table for Machine 1

 To
From Job 1 Job 2 Job 3

Job 1 - 56 19
Job 2 10 - 33
Job 3 58 13 -

Table 6. Sequence-dependent setup times table for Machine 2

 To
From Job 1 Job 2 Job 3

Job 1 - 15 21
Job 2 26 - 57
Job 3 54 57 -

Table 7. Sequence-dependent setup times table for Machine 3

 To
From Job 1 Job 2 Job 3

Job 1 - 36 18
Job 2 43 - 45
Job 3 42 29 -

6.1 Least Work Remaining with sequence-
dependent setup times (LWKRS) Rule

The work remaining values of the considered opera-
tions in the set of active and nondelay schedules are used
in the standard LWKR rule to solve the conflicting opera-
tions. However, for the job shop scheduling problems
with inter-machine overlapping sequence-dependent setup
times, the sequence-dependent setups should be consider-
ed. Therefore, the priority index of the new modified rule
is the summation of sequence-dependent setup time and
the work remaining.

The calculation steps of LWKRS are as follows.

Step 1: Set the initial value of RetValue, which is the
initial value of work remaining, to be the possible

8 Chatpon Mongkalig·Mario T. Tabucanon·Nguyen Van Hop

maximum value.
Step 2: Do the loop until all of the conflicting operations

in the set of active or nondelay schedules have
been considered.

Step 3: Calculate the work remaining of the considered
conflicting operation.

Step 4: Determine the sequence-dependent setup time of
the considered conflicting operation by looking
for the setup time in the scheduling database.

Step 5: Set the Work remaining = Work remaining time +
Sequence-dependent setup time.

Step 6: Compare the RetValue and the Work remaining
calculated in Step 5. If the Work remaining is
lower than RetValue, then go to Step 7, otherwise
go to Step 8.

Step 7: Set the value of RetValue = Work remaining. Then
go to Step 8.

Step 8: Shift to the job set of the next conflicting
operations.

The numerical example of scheduling data from Table

3 to Table 7 using the nondelay scheduling generation
algorithm with the LWKRS rule is shown below.

Loop : 1

PS : {Empty Set}
Sigma (the earliest start time of each operation) :

(1,1,3 := 01-Feb-04 08:00:00),
(2,1,2 := 01-Feb-04 08:00:00),
(3,1,1 := 01-Feb-04 08:00:00),

Sigma* (the smallest value of Sigma) :
01-Feb-04 08:00:00

M* : 3,2,1
Nondelay schedulable operations :

{(1,1,3),(2,1,2),(3,1,1)}
LWKRS :
LWKRS(1,1,3) = 0+33=33; LWKRS(2,1,2) =

0+35=35; LWKRS(3,1,1) = 0+18=18
Selected Job : (3,1,1)

Loop : 2
PS : {(3,1,1)}
Sigma : (1,1,3 := 01-Feb-04 08:00:00),

(2,1,2 := 01-Feb-04 08:00:00),
(3,2,2 := 01-Feb-04 08:03:00),

Sigma* : 01-Feb-04 08:00:00
M* : 3,2
Nondelay schedulable operations : {(1,1,3),(2,1,2)}
LWKRS : LWKRS(1,1,3) = 0+33=33;
LWKRS(2,1,2) = 0+35=35
Selected Job : (1,1,3)

Loop : 3
PS : {(3,1,1),(1,1,3)}
Sigma : (1,2,2 := 01-Feb-04 08:04:00),

(2,1,2 := 01-Feb-04 08:00:00),
(3,2,2 := 01-Feb-04 08:03:00),

Sigma* : 01-Feb-04 08:00:00
M* : 2
Nondelay schedulable operations : {(2,1,2)}
LWKRS : LWKRS(2,1,2) = 0+35=35
Selected Job : (2,1,2)

Loop : 4
PS : {(3,1,1),(1,1,3),(2,1,2)}
Sigma : (1,2,2 := 01-Feb-04 08:03:00),

(2,2,3 := 01-Feb-04 08:04:00),
(3,2,2 := 01-Feb-04 08:03:00),

Sigma* : 01-Feb-04 08:03:00
M* : 2
Nondelay schedulable operations : {(1,2,2),(3,2,2)}
LWKRS : LWKRS(1,2,2) = 26+29=55;
LWKRS(3,2,2) = 57+15=72
Selected Job : (1,2,2)

Loop : 5
PS : {(3,1,1),(1,1,3),(2,1,2),(1,2,2)}
Sigma : (1,3,1 := 01-Feb-04 08:29:00),

(2,2,3 := 01-Feb-04 08:04:00),
(3,2,2 := 01-Feb-04 08:37:00),

Sigma* : 01-Feb-04 08:04:00
M* : 3
Nondelay schedulable operations : {(2,2,3)}
LWKRS : LWKRS(2,2,3) = 36+32=68
Selected Job : (2,2,3)

Loop : 6
PS : {(3,1,1),(1,1,3),(2,1,2),(1,2,2),(2,2,3)}
Sigma : (1,3,1 := 01-Feb-04 08:29:00),

(2,3,1 := 01-Feb-04 08:57:00),
(3,2,2 := 01-Feb-04 08:37:00),

Sigma* : 01-Feb-04 08:29:00
M* : 1
Nondelay schedulable operations : {(1,3,1)}
LWKRS : LWKRS(1,3,1) = 58+21=79
Selected Job : (1,3,1)

Loop : 7
PS : {(3,1,1),(1,1,3),(2,1,2),(1,2,2),(2,2,3),(1,3,1)}
Sigma : (2,3,1 := 01-Feb-04 09:48:00),

(3,2,2 := 01-Feb-04 08:37:00),
Sigma* : 01-Feb-04 08:37:00
M* : 2
Nondelay schedulable operations : {(3,2,2)}
LWKRS : LWKRS(3,2,2) = 21+15=36
Selected Job : (3,2,2)

Loop : 8
PS : {(3,1,1), (1,1,3), (2,1,2), (1,2,2), (2,2,3), (1,3,1),

(3,2,2)}
Sigma : (2,3,1 := 01-Feb-04 09:48:00),

(3,3,3 := 01-Feb-04 09:10:00),
Sigma* : 01-Feb-04 09:10:00
M* : 3
Nondelay schedulable operations : {(3,3,3)}
LWKRS : LWKRS(3,3,3) = 45+3=48
Selected Job : (3,3,3)

 Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine overlapping Sequence-dependent Setup Times 9

Loop : 9
PS : {(3,1,1), (1,1,3), (2,1,2), (1,2,2),(2,2,3),(1,3,1),

(3,2,2), (3,3,3)}
Sigma : (2,3,1 := 01-Feb-04 09:48:00),
Sigma* : 01-Feb-04 09:48:00
M* : 1
Nondelay schedulable operations : {(2,3,1)
LWKRS : LWKRS(2,3,1) = 56+2=58
Selected Job : (2,3,1)

Finish :
Complete Schedule : {(3,1,1), (1,1,3), (2,1,2), (1,2,2),

(2,2,3), (1,3,1), (3,2,2), (3,3,3), (2,3,1)}

6.2 Most Work Remaining with sequence-
dependent setup times (MWKRS) Rule

As in LWKR, the values of the work remaining of
conflicting operations in the set of active and nondelay
schedules are used as the priority index in the standard
MWKR rule. In contrast, the conflicting operation with
the greatest value of the work remaining is selected. How-
ever, for the job shop scheduling problems with inter-
machine overlapping sequence-dependent setup times, the
sequence-dependent setups should be considered. There-
fore, the priority index of the new modified rule is the
summation of the sequence-dependent setup time and the
work remaining.

The calculation steps of MWKRS are as follows.
Step 1 Set the initial value of RetValue, which is the

initial value of work remaining, to be the possible
minimum value.

Step 2 Do the loop until all of the conflicting operations
in the set of active or nondelay schedules have
been considered.

Step 3 Calculate the work remaining of the considered
conflicting operation.

Step 4 Determine the sequence-dependent setup time of
the considered conflicting operation by looking for
the setup time in the scheduling database.

Step 5 Set the Work remaining = Work remaining time +
Sequence-dependent setup time.

Step 6 Compare the RetValue and the Work remaining
calculated in Step 5. If the Work remaining is
greater than RetValue, then go to Step 7, otherwise
go to Step 8.

Step 7 Set the value of RetValue = Work remaining. Then
go to Step 8.

Step 8 Shift to the job set of the next conflicting
operations.

The numerical example of scheduling data from

Table 3 to Table 7 using the nondelay schedule generation
algorithm with the MWKRS rule is presented as follows.

Loop : 1
PS : {Empty Set}
Sigma : (1,1,3 := 01-Feb-04 08:00:00),

(2,1,2 := 01-Feb-04 08:00:00),
(3,1,1 := 01-Feb-04 08:00:00),

Sigma* : 01-Feb-04 08:00:00
M* : 3,2,1
Nondelay schedulable operations: {(1,1,3), (2,1,2),

(3,1,1)}
MWKRS : MWKRS(1,1,3) = 0+33=33;

MWKRS(2,1,2) = 0+35=35;
MWKRS(3,1,1) = 0+18=18

Selected Job : (2,1,2)
Loop : 2

PS : {(2,1,2)}
Sigma : (1,1,3 := 01-Feb-04 08:00:00),

(2,2,3 := 01-Feb-04 08:03:00),
(3,1,1 := 01-Feb-04 08:00:00),

Sigma* : 01-Feb-04 08:00:00
M* : 3,1
Nondelay schedulable operations: {(1,1,3), (3,1,1)}
MWKRS : MWKRS(1,1,3) = 0+33=33;

MWKRS(3,1,1) = 0+18=18
Selected Job : (1,1,3)

Loop : 3
PS : {(2,1,2), (1,1,3)}
Sigma : (1,2,2 := 01-Feb-04 08:03:00),

(2,2,3 := 01-Feb-04 08:04:00),
(3,1,1 := 01-Feb-04 08:00:00),

Sigma* : 01-Feb-04 08:00:00
M* : 1
Nondelay schedulable operations: {(3,1,1)}
MWKRS : MWKRS(3,1,1) = 0+18=18
Selected Job : (3,1,1)

Loop : 4
PS : {(2,1,2), (1,1,3), (3,1,1)}
Sigma : (1,2,2 := 01-Feb-04 08:03:00),

(2,2,3 := 01-Feb-04 08:04:00),
(3,2,2 := 01-Feb-04 08:03:00),

Sigma* : 01-Feb-04 08:03:00
M* : 2
Nondelay schedulable operations: {(1,2,2), (3,2,2)}
MWKRS : MWKRS(1,2,2) = 26+29=55;

MWKRS(3,2,2) = 57+15=72
Selected Job : (3,2,2)

Loop : 5
PS : {(2,1,2), (1,1,3), (3,1,1), (3,2,2)}
Sigma : (1,2,2 := 01-Feb-04 09:12:00),

(2,2,3 := 01-Feb- 01 08:04:00),
(3,3,3 := 01-Feb-04 09:00:00),

Sigma* : 01-Feb-04 08:04:00
M* : 3
Nondelay schedulable operations: {(2,2,3)}
MWKRS : MWKRS(2,2,3) = 36+32=68
Selected Job : (2,2,3)

10 Chatpon Mongkalig·Mario T. Tabucanon·Nguyen Van Hop

Loop : 6
PS : {(2,1,2), (1,1,3), (3,1,1), (3,2,2), (2,2,3)}
Sigma : (1,2,2 := 01-Feb-04 09:12:00),

(2,3,1 := 01-Feb-04 08:57:00),
(3,3,3 := 01-Feb-04 09:10:00),

Sigma* : 01-Feb-04 08:57:00
M* : 1
Nondelay schedulable operations: {(2,3,1)}
MWKRS : MWKRS(2,3,1) = 13+2=15
Selected Job : (2,3,1)

Loop : 7
PS : {(2,1,2), (1,1,3), (3,1,1), (3,2,2), (2,2,3), (2,3,1)}
Sigma : (1,2,2 := 01-Feb-04 09:12:00),

(3,3,3 := 01-Feb-04 09:10:00),
Sigma* : 01-Feb-04 09:10:00
M* : 3
Nondelay schedulable operations: {(3,3,3)}
MWKRS : MWKRS(3,3,3) = 45+3=48
Selected Job : (3,3,3)

Loop : 8
PS : {(2,1,2), (1,1,3), (3,1,1), (3,2,2), (2,2,3), (2,3,1),

(3,3,3)}
Sigma : (1,2,2 := 01-Feb-04 09:12:00),
Sigma* : 01-Feb-04 09:12:00
M* : 2
Nondelay schedulable operations: {(1,2,2)}
MWKRS : MWKRS(1,2,2) = 54+29=83
Selected Job : (1,2,2)

Loop : 9
PS : {(2,1,2), (1,1,3), (3,1,1), (3,2,2), (2,2,3), (2,3,1),

(3,3,3), (1,2,2)}
Sigma : (1,3,1 := 01-Feb-04 10:06:00),
Sigma* : 01-Feb-04 10:06:00
M* : 1
Nondelay schedulable operations: {(1,3,1)}
MWKRS : MWKRS(1,3,1) = 10+21=31
Selected Job : (1,3,1)

Finish :
Complete Schedule : {(2,1,2), (1,1,3), (3,1,1), (3,2,2),

(2,2,3), (2,3,1), (3,3,3), (1,2,2), (1,3,1)}

6.3 Shortest Total Sequence-dependent Setup
and Processing Times (SSPT) Rule

According to the standard SPT (Shortest Processing
Time), to solve the conflicting operations in the set of ac-
tive and nondelay schedules, the operation with the shor-
test processing time is selected for processing next. Se-
quence-dependent setup times should be taken into ac-
count in the popular SPT rule, namely SSPT rule.

The calculation steps of SSPT are as follows.

Step 1 Set the initial value of RetValue, which is the
initial value of processing time of the conflicting
operation, to be the possible maximum value.

Step 2 Do the loop until all of the conflicting operations
in the set of active or nondelay schedules have
been considered.

Step 3 Determine the sequence-dependent setup time of
the considered conflicting operation by looking for
the setup time in the scheduling database.

Step 4 Set the Processing time = Sequence-dependent
setup time + Processing time.

Step 5 Compare the RetValue and the Processing time
calculated in Step 4. If the Processing time is
lower than RetValue, then go to Step 6, otherwise
go to Step 7.

Step 6 Set the value of RetValue = Processing time. Then
go to Step 7.

Step 7 Shift to the job set of the next conflicting
operations.

The numerical example of scheduling data in from

Table 3 to Table 7 using SSPT rule to solve the confli-
cting operation in the set of nondelay schedules is shown
below.

Loop : 1

PS : {Empty Set}
Sigma : (1,1,3 := 01-Feb-04 08:00:00),

(2,1,2 := 01-Feb-04 08:00:00),
(3,1,1 := 01-Feb-04 08:00:00),

Sigma* : 01-Feb-04 08:00:00
M* : 3,2,1
Nondelay schedulable operations :

{(1,1,3), (2,1,2), (3,1,1)}
SSPT : SSPT(1,1,3) = 0+4=4;

SSPT(2,1,2) = 0+3=3;
SSPT (3,1,1) = 0+3=3

Selected Job : (2,1,2)
Loop : 2

PS : {(2,1,2)}
Sigma : (1,1,3 := 01-Feb-04 08:00:00),

(2,2,3 := 01-Feb-04 08:03:00),
(3,1,1 := 01-Feb-04 08:00:00),

Sigma* : 01-Feb-04 08:00:00
M* : 3,1
Nondelay schedulable operations : {(1,1,3), (3,1,1)}
SSPT : SSPT(1,1,3) = 0+4=4;

SSPT(3,1,1) = 0+3=3
Selected Job : (3,1,1)

Loop : 3
PS : {(2,1,2), (3,1,1)}
Sigma : (1,1,3 := 01-Feb-04 08:00:00),

(2,2,3 := 01-Feb-04 08:03:00),
(3,2,2 := 01-Feb-04 08:03:00),

Sigma* : 01-Feb-04 08:00:00
M* : 3
Nondelay schedulable operations : {(1,1,3)}
SSPT : SSPT(1,1,3) = 0+4=4

 Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine overlapping Sequence-dependent Setup Times 11

Selected Job : (1,1,3)
Loop : 4

PS : {(2,1,2), (3,1,1), (1,1,3)}
Sigma : (1,2,2 := 01-Feb-04 08:03:00),

(2,2,3 := 01-Feb-04 08:04:00),
(3,2,2 := 01-Feb-04 08:03:00),

Sigma* : 01-Feb-04 08:03:00
M* : 2
Nondelay schedulable operations : {(1,2,2),(3,2,2)}
SSPT : SSPT(1,2,2) = 26+8=34;

SSPT(3,2,2) = 57+12=69
Selected Job : (1,2,2)

Loop : 5
PS : {(2,1,2), (3,1,1), (1,1,3), (1,2,2)}
Sigma : (1,3,1 := 01-Feb-04 08:29:00),

(2,2,3 := 01-Feb-04 08:04:00),
(3,2,2 := 01-Feb-04 08:37:00),

Sigma* : 01-Feb-04 08:04:00
M* : 3
Nondelay schedulable operations : {(2,2,3)}
SSPT : SSPT(2,2,3) = 36+30=66
Selected Job : (2,2,3)

Loop : 6
PS : {(2,1,2), (3,1,1), (1,1,3), (1,2,2), (2,2,3)}
Sigma : (1,3,1 := 01-Feb-04 08:29:00),

(2,3,1 := 01-Feb-04 08:57:00),
(3,2,2 := 01-Feb-04 08:37:00),

Sigma* : 01-Feb-04 08:29:00
M* : 1
Nondelay schedulable operations : {(1,3,1)}
SSPT : SSPT(1,3,1) = 58+21=79
Selected Job : (1,3,1)

Loop : 7
PS : {(2,1,2), (3,1,1), (1,1,3), (1,2,2), (2,2,3), (1,3,1)}
Sigma : (2,3,1 := 01-Feb-04 09:48:00),

(3,2,2 := 01-Feb-04 08:37:00),
Sigma* : 01-Feb-04 08:37:00
M* : 2
Nondelay schedulable operations : {(3,2,2)}
SSPT : SSPT(3,2,2) = 21+12=33
Selected Job : (3,2,2)

Loop : 8
PS : {(2,1,2), (3,1,1), (1,1,3), (1,2,2), (2,2,3), (1,3,1),

(3,2,2)}
Sigma : (2,3,1 := 01-Feb-04 09:48:00),

(3,3,3 := 01-Feb-04 09:10:00),
Sigma* : 01-Feb-04 09:10:00
M* : 3
Nondelay schedulable operations : {(3,3,3)}
SSPT : SSPT(3,3,3) = 45+3=48
Selected Job : (3,3,3)

Loop : 9
PS : {(2,1,2), (3,1,1), (1,1,3), (1,2,2), (2,2,3), (1,3,1),

(3,2,2), (3,3,3)}
Sigma : (2,3,1 := 01-Feb-04 09:48:00),

Sigma* : 01-Feb-04 09:48:00
M* : 1
Nondelay schedulable operations : {(2,3,1)}
SSPT : SSPT(2,3,1) = 56+2=58
Selected Job : (2,3,1)

Finish :
Complete Schedule : {(2,1,2), (3,1,1), (1,1,3), (1,2,2),

(2,2,3), (1,3,1), (3,2,2), (3,3,3), (2,3,1)}

6.4 Smallest Value Obtained by Multiplying Total
Setup and Processing Times with Total
Processing Time (SMST) Rule

The calculation steps of SMST are as follows.
Step 1 Set the initial value of RetValue to be the possible

maximum value.
Step 2 Do the loop until all of the conflicting operations

in the set of active or nondelay schedules have
been considered.

Step 3 Determine the sequence-dependent setup time of
the considered conflicting operation by looking for
the setup time in the scheduling database.

Step 4 Set the Processing time = Sequence-dependent
setup time + Processing time.

Step 5 Compare the RetValue and the Total processing
time * Processing time calculated in Step 4. If the
Total processing time * Processing time is lower
than RetValue, then go to Step 6, otherwise go to
Step 7.

Step 6 Set the value of RetValue = Total processing time *
Processing time. Then go to Step 7.

Step 7 Shift to the job set of the next conflicting
operations.

As in SSPT, the nondelay scheduling algorithm is

the same; however, the conflicting operations in the set
of nondelay schedules are solved as follows.

Loop : 1

PS : {Empty Set}
Sigma : (1,1,3 := 01-Feb-04 08:00:00),

(2,1,2 := 01-Feb-04 08:00:00),
(3,1,1 := 01-Feb-04 08:00:00),

Sigma* : 01-Feb-04 08:00:00
M* : 3,2,1
Nondelay schedulable operations :

{(1,1,3), (2,1,2), (3,1,1)}
SMST : SMST = (Sequence-dependent Setup time
 + Processing time)* Total processing time
SMST(1,1,3) = (0+4)*33=132;
SMST (2,1,2) = (0+3)*35=105;
SMST(3,1,1) = (0+3)*18=54
Selected Job : (3,1,1)

Loop : 2
PS : {(3,1,1)}

12 Chatpon Mongkalig·Mario T. Tabucanon·Nguyen Van Hop

Sigma : (1,1,3 := 01-Feb-04 08:00:00),
(2,1,2 := 01-Feb-04 08:00:00),
(3,2,2 := 01-Feb-04 08:03:00),

Sigma* : 01-Feb-04 08:00:00
M* : 3,2
Nondelay schedulable operations : {(1,1,3),(2,1,2)}
SMST : SMST(1,1,3) = (0+4)*33=132;

SMST(2,1,2) = (0+3)*35=105
Selected Job : (2,1,2)
Do loop until a complete schedule is obtained.

6.5 Shortest Total Sequence-dependent Setup
and Total Processing Times (SSTPT) Rule

From the standard Shortest Total Processing Time
(STPT), the total processing time is used to solve the con-
flicting operations. The modified STPT, namely SSTPT,
is proposed.

The calculation steps of SSTPT are as follows.

Step 1 Set the initial value of RetValue, which is the
initial value of the job total processing time of the
conflicting operation, to be the possible maximum
value.

Step 2 Do the loop until all of the conflicting operations
in the set of active or nondelay schedules have
been considered.

Step 3 Determine the sequence-dependent setup time of
the considered conflicting operation by looking for
the setup time in the scheduling database.

Step 4 Set the Total processing time = Sequence-
dependent setup time + Total processing time.

Step 5 Compare the RetValue and the Total processing
time calculated in Step 4. If the Total processing
time is lower than RetValue, then go to Step 6,
otherwise go to Step 7.

Step 6 Set the value of RetValue = Total processing time.
Then go to Step 7.

Step 7 Shift to the job set of the next conflicting
operations.

As in SSPT and SMST, the nondelay scheduling

algorithm is the same; however, the conflicting operations
in the set of nondelay schedules are solved as follows.

Loop : 1

PS : {Empty Set}
Sigma : (1,1,3 := 01-Feb-04 08:00:00),

(2,1,2 := 01-Feb-04 08:00:00),
(3,1,1 := 01-Feb-04 08:00:00),

Sigma* : 01-Feb-04 08:00:00
M* : 3,2,1
Nondelay schedulable operations :

{(1,1,3), (2,1,2), (3,1,1)}
SSTPT : SSTPT(1,1,3) = 0+33=33;

SSTPT(2,1,2) = 0+35=35;
SSTPT(3,1,1) = 0+18=18

Selected Job : (3,1,1)
Loop : 2

PS : {(3,1,1)}
Sigma : (1,1,3 := 01-Feb-04 08:00:00),

(2,1,2 := 01-Feb-04 08:00:00),
(3,2,2 := 01-Feb-04 08:03:00),

Sigma* : 01-Feb-04 08:00:00
M* : 3,2
Nondelay schedulable operations :

{(1,1,3), (2,1,2)}
SSTPT : SSTPT(1,1,3) = 0+33=33;

SSTPT(2,1,2) = 0+35=35
Selected Job : (1,1,3)

Do loop until a complete schedule is obtained.

7. COMPARISON BETWEEN THE
MODIFIED PRIORITY RULES WITH
SETUP TIMES CONSIDERATION AND
THE CLASSICAL PRIORITY RULES

The nondelay scheduling generation algorithms are
used in this experiment. There are two important factors
considered in this experiment as follows: (i) priority rules
for solving conflicting operations in the set of nondelay
schedules, and (ii) sequence-dependent setup time consi-
deration (with or without setup times consideration). For
the priority rules, there are five modified priority rules as
mentioned in Section 6. Mean values of ten replications
are determined to use in the comparison. The experimen-
tal results are shown in Figures 3, 4 and 5.

The meanings of Priority rule 1 to Priority rule 10 are
Rule 1 is LWKR Rule 6 is LWKRS
Rule 2 is MWKR Rule 7 is MWKRS
Rule 3 is SMT Rule 8 is SMST
Rule 4 is SPT Rule 9 is SSPT
Rule 5 is STPT Rule 10 is SSTPT.

The three measures of performance are considered in

this experiment as follows:
• Total earliness and progressive weighted tardiness

(Figure 3)
• Total progressive weighted tardiness (Figure 4)
• Total earliness and tardiness (Figure 5)

From Figure 3 to Figure 5, the proposed priority rules
with setup times consideration, which are LWKRS, MWKRS,
SMST, SSPT, and SSTPT rules are superior to the cla-
ssical priority rules, which are LWKR, MWKR, SMT,
SPT, and STPT. The sequence-dependent setup time
consideration has a significant effect on the experimented
performance measures.

 Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine overlapping Sequence-dependent Setup Times 13

Figure 3. Priority rules with setup times comparison results based on total earliness and progressive weighted tardiness

Interaction Plot

Priority Rules

With Setup Time
0
1

8600

9600

10600

11600

12600

13600

1 2 3 4 5

Figure 4. Priority rules with setup times comparison results based on total progressive weighted tardiness

Interaction Plot

Priority Rules

With Setup Time
0
1

1700

1800

1900

2000

2100

1 2 3 4 5

Figure 5. Priority rules with setup times comparison results based on total earliness and tardiness

Rule 1

Rule 1

Rule 3 Rule 4

Rule 2

Rule 2

Rule 5

Rule 5

Rule 6

Rule 6
Rule 7

Rule 7 Rule 8

Rule 8

Rule 9

Rule 9

Rule 4

Rule 10

Rule 10

Rule 3

14 Chatpon Mongkalig·Mario T. Tabucanon·Nguyen Van Hop

From Table 8, the difference between the modified
priority rules with setup times consideration and the
classical priority rules without setup times consideration
based on total progressive weighted tardiness can be ar-
ranged from the greatest value of the difference to the
smallest value of the difference as follows:

SMST rule is different from SMT rule by 23.26%,
MWKRS rule is different from MWKR rule by 7.42%,
LWKRS rule is different from LWKR rule by 7.07%,
SSTPT rule is different from STPT rule by 6.67%, and
SSPT rule is different from SPT rule by 6.32%.
The average of the difference is 9.28%.

Based on the total earliness and progressive weigh-

ted tardiness, the difference between the modified priority
rules with setup times consideration and the classical
priority rules without setup times consideration can be
arranged from the greatest value of the difference to the
smallest value of the difference as follows:

SMST rule is different from SMT rule by 21.84%,
MWKRS rule is different from MWKR rule by 6.90%,
LWKRS rule is different from LWKR rule by 6.72%,
SSTPT rule is different from STPT rule by 5.69%, and
SSPT rule is different from SPT rule by 5.24%.
The average of the difference is 10.15%.

Based on the total earliness and tardiness, the dif-
ference between the modified priority rules with setup
times consideration and the classical priority rules with-
out setup times consideration can be arranged from the
greatest value of the difference to the smallest value of
the difference as follows:

LWKRS rule is different from LWKR rule by 9.70%,
SMST rule is different from SMT rule by 8.56%,
SSTPT rule is different from STPT rule by 5.10%,
MWKRS rule is different from MWKR rule by 1.88%,
and SSPT rule is different from SPT rule by 0.91%.
The average of the difference is 5.232%.

It can be concluded that, based on the following me-

asures of performance: (i) total progressive weighted tar-
diness (ii) earliness and progressive weighted tardiness
and (iii) total earliness and tardiness, the modified priority
rules with sequence-dependent setup times are superior to
the classical priority rules.

8. THE PROPOSED MPWT HEURISTIC
METHOD

In this paper, a new heuristic approach to solve the
conflicting operations in the set of active and nondelay

Table 8. The comparison data of the priority rules with setup times consideration

Priority Rules Total Progressive Weighted
Tardiness

Total Earliness and Progressive
Weighted Tardiness

Total Earliness and
Tardiness

LWKR (Rule 1) 12628.5 13323.7 2062.3
LWKRS (Rule 6) 11735.3 12428 1862.2

Difference 893.2 895.7 200.1
% Difference 7.07% 6.72% 9.70%

MWKR (Rule 2) 9655.11 10412.4 1879.8
MWKRS (Rule 7) 8938.37 9693.72 1844.5

Difference 716.74 718.68 35.3
% Difference 7.42% 6.90% 1.88%
SMT (Rule 3) 11410.2 12166.4 1953.65

SMST (Rule 8) 8756.35 9509.45 1786.35
Difference 2653.85 2656.95 167.3

% Difference 23.26% 21.84% 8.56%
SPT (Rule 4) 11456.2 12167.2 1900.2

SSPT (Rule 9) 10731.9 11529.1 1882.85
Difference 724.3 638.1 17.35

% Difference 6.32% 5.24% 0.91%
STPT (Rule 5) 9223.15 9902 1878.35

SSTPT (Rule 10) 8607.71 9338.36 1782.5
Difference 615.44 563.64 95.85

% Difference 6.67% 5.69% 5.10%

 Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine overlapping Sequence-dependent Setup Times 15

schedules is proposed and compared with other efficient
heuristics. This new heuristic method with sequence-
dependent setup times consideration is developed to solve
the new job shop measures of performance as follows:
(i) total earliness and progressive weighted tardiness and
(ii) total progressive weighted tardiness. The objective of
Mean Progressive Weighted Tardiness Estimator (MPWT)
heuristic method is to determine the estimate of the job
(minimum transport batch) completion time, and then to
estimate the mean progressive weighted tardiness. There-
fore, it is named “Mean Progressive Weighted Tardiness
Estimator (MPWT) Heuristic Method”. The flow chart of
the MPWT heuristic procedure is displayed in Figure 6.

The calculation steps of the MPWT heuristic method

are as follows.
Step 1 Set the initial value – MinMPWT = the maximum

value.
Step 2 Do the following loop until all conflicting opera-

tions have been considered. If the number of loop
variable I < the number of conflicting operations
in the set of active and nondelay schedules, then
follow the next step; otherwise go to Step 13.

Step 3 Set the initial values – MPWT = 0 and N = 0.
Step 4 Repeat the loop in every job and assume that

each conflicting operation is added in the partial
sche-dule, then go to Step 8.

Step 5 Calculate the start time of operation I. Then find
the machine that this operation I works on, and
find the finish time of the remaining operation I
based on work remaining of the considered job
(the estimate of job completion time).

Step 6 Compare the estimate of job completion time and
the job due date. If the estimate of job completion
time is greater than the job due date (the job is
estimated to be late), set N (the estimate value of
the number of tardy jobs) = N + 1, Progressive
Tardiness = (estimate of job completion time –
due date) * Penalty Weight * (1+ progressive
rate)N-1, TotalProgressiveWeighted Tardiness =
TotalProgressiveWeightedTardiness +
Progressive Tardiness.

Step 7 Consider the next job, and then go to Step 4.
Step 8 Calculate the estimate of mean progressive

weighted tardiness by calculating MPWT =
TotalProgressiveWeightedTardiness / Number of
total jobs.

Step 9 Set data to the current job and machine data.
Step 10 Find the minimum value of MPWT.
Step 11 Shift to the next job, consider the next job data,

and then go back to Step 3.
Step 12 Select the conflicting operation whose job has the

minimum MPWT.
Step 13 Determine the appropriate sequence-dependent

setup times to be added in the value of variables

for calculation in the next iteration, and consider
the next operation.

To illustrate the numerical example of the proposed

MPWT heuristic method, consider the numerical example
shown in Section 6.

The MPWT heuristic approach can be applied in the
set of active schedules and nondelay schedules. However,
it would be better to solve the conflicting operations in
the set of active schedules, since the set of nondelay
schedules is the subset of active schedules. Therefore, the
numerical example of modified active schedule genera-
tion algorithm using the MPWT heuristic method to solve
the conflicting operations in the set of active schedules is
shown below.

Find start time of operation I (Sigma)
Find machine that this operation I works on

Find finish time of remain operation I
(CompletionTimeEstimate)

CompletionTimeEstimate >
Due date

N := N + 1
ProgressiveTardiness = (CompletionTimeEstimate -

due date) * Penalty * (1 + progressive)N-1

TotalProgressiveWeightedTardiness :=
TotalProgressiveWeightedTardiness +

ProgressiveTardiness

Yes

Keep current job and machine data
Set all values from selected job to current

job

I := 0; MPWT := 0; N := 0

I < Number of total jobs

Yes

No

No

I := I + 1

MPWT :=
TotalProgressiveWeightedTardiness /

Number of jobs
Set data to current job and machine data

START

END

Figure 6. Flow chart of the MPWT heuristic method

16 Chatpon Mongkalig·Mario T. Tabucanon·Nguyen Van Hop

As in Section 6, the beginning of the complete sche-
dule is 01 February 2004 8:00 a.m., and the scheduling
data that are job routing, processing times, and inter-
machine overlapping sequence dependent setup times are
the same.

Loop : 1

PS : {Empty Set}
Phi (the earliest finish time of each operation):

(1,1,3 := 01-Feb-04 08:00:00+0+4
= 01-Feb-04 08:04:00),

(2,1,2 := 01-Feb-04 08:00:00+0+3
= 01-Feb-04 08:03:00),

(3,1,1 := 01-Feb-04 08:00:00+0+3
= 01-Feb-04 08:03:00)

Phi* (the smallest value of Phi) :
01-Feb-04 08:03:00

M* : 2,1
Active Schedulable Operations & Estimated MPWT:

(2,1,2) :=
JOB 1 => Estimated Completion Time

= Min((1,1,3) := 01-Feb-04 08:00:00+0+33
= 01-Feb-04 08:33:00) = 01-Feb-04 08:33:00;
Due Date = 01-Feb-04 09:34:00;

JOB 2 => Estimated Completion Time
= Min((2,2,3) := 01-Feb-04 08:03:00+0+32
=01-Feb-04 08:35:00) = 01-Feb-04 08:35:00;
Due Date = 01-Feb-04 09:38:00;

JOB 3 => Estimated Completion Time
= Min((3,1,1) := 01-Feb-04 08:00:00+0+18
= 01-Feb-04 08:18:00) = Feb-04 08:18:00;
Due Date = 01-Feb-04 10:15:00;

Estimated Mean Progressive Weighted Tardiness = 0
No. of Tardy Job = 0

(3,1,1) := JOB 1=> Estimated Completion Time
= Min((1,1,3) := 01-Feb-04 08:00:00+0+33
= 01-Feb-04 08:33:00) = 01-Feb-04 08:33:00;
Due Date = 01-Feb-04 09:34:00;

JOB 2=> Estimated Completion Time
= Min((2,1,2) := 01-Feb-04 08:00:00+0+35
= 01-Feb-04 08:35:00) = 01-Feb-04 08:35:00;
Due Date = 01-Feb-04 09:38:00;

JOB 3=> Estimated Completion Time
= Min((3,2,2) := 01- Feb-04 08:03:00+0+15
=01-Feb-04 08:18:00)=01-Feb-04 08:18:00;
Due Date = 01-Feb-04 10:15:00;

Estimated Mean Progressive Weighted Tardiness = 0
No. of Tardy Job = 0

 Selected Job : (2,1,2=0)

Loop : 2
PS : {(2,1,2)}
Phi : (1,1,3 := 01-Feb-04 08:00:00+0+4

= 01-Feb-04 08:04:00),
(2,2,3 := 01-Feb-04 08:03:00+0+30

= 01-Feb-04 08:33:00),
(3,1,1 := 01-Feb-04 08:00:00+0+3

= 01-Feb-04 08:03:00)
Phi* : 01-Feb-04 08:03:00
M* : 1

(3,1,1)
Active Schedulable Operations & Estimated MPWT:
JOB 1=> Estimated Completion Time

= Min((1,1,3) := 01-Feb-04 08:00:00+0+33
= 01-Feb-04 08:33:00) = 01-Feb-04 08:33:00;
Due Date = 01-Feb-04 09:34:00;

JOB 2 => Estimated Completion Time
= Min((2,2,3) := 01-Feb-04 08:03:00+0+32
= 01-Feb-04 08:35:00) = 01-Feb-04 08:35:00;
Due Date = 01-Feb-04 09:38:00;

JOB 3 => Estimated Completion Time
= Min((3,2,2) := 01-Feb-04 08:03:00+57+15
= 01-Feb-04 09:15:00) = 01-Feb-04 09:15:00;

Due Date = 01-Feb-04 10:15:00
Estimated Mean Progressive Weighted Tardiness = 0
No. of Tardy Job = 0
Selected Job : (3,1,1=0)

Loop : 3
PS : {(2,1,2),(3,1,1)}
Phi : (1,1,3 := 01-Feb-04 08:00:00+0+4

=01-Feb-04 08:04:00),
(2,2,3 := 01-Feb-04 08:03:00+0+30
= 01-Feb-04 08:33:00),
(3,2,2 := 01-Feb-04 08:03:00+57+12

=01-Feb-04 09:12:00)
Phi* : 01-Feb-04 08:04:00
M* : 3
Active Schedulable Operations & Estimated MPWT:
(1,1,3) :=
JOB 1=> Estimated Completion Time

= Min((1,2,2) := 01-Feb-04 08:03:00+26+29
=01-Feb-04 08:58:00)= 01-Feb-04 08:58:00;

Due Date = 01-Feb-04 09:34:00;
JOB 2=> Estimated Completion Time

= Min((2,2,3) := 01-Feb-04 08:04:00+36+32
= 01-Feb-04 09:12:00) = 01- Feb-04 09:12:00;

Due Date = 01-Feb-04 09:38:00;
JOB 3 => Estimated Completion Time

= Min((3,2,2) := 01-Feb-04 08:03:00+57+15
= 01-Feb-04 09:15:00) = 01-Feb-04 09:15:00;

Due Date = 01-Feb-04 10:15:00;
Estimated Mean Progressive Weighted Tardiness = 0
No. of Tardy Job = 0
(2,2,3) :=
JOB 1 => Estimated Completion Time

= Min((1,1,3) := 01-Feb-04 08:33:00+43+33
= 01-Feb-04 09:49:00) = 01-Feb-04 09:49:00;
Due Date = 01-Feb-04 09:34:00;

JOB 2=> Estimated Completion Time
= Min((2,3,1) := 01-Feb-04 08:20:00+13+2
=01-Feb-04 08:35:00) = 01-Feb-04 08:35:00;
Due Date = 01-Feb-04 09:38:00;

 Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine overlapping Sequence-dependent Setup Times 17

JOB 3=> Estimated Completion Time
= Min((3,2,2) := 01-Feb-04 08:03:00+57+15
= 01-Feb-04 09:15:00)= 01-Feb-04 09:15:00;
Due Date = 01-Feb-04 10:15:00;

Estimated Mean Progressive Weighted Tardiness = 5
No. of Tardy Job = 1
Selected Job : (1,1,3=0)
Do loop from loop 4 to loop 9 until a complete

schedule is obtained.

Table 9. The results of the numerical example

Heuristics
Total Earliness &

Progressive Weighted
Tardiness

Total
Earliness &
Tardiness

MPWT 88 52
MWKR 358 106

SSPT, SSTPT 631 99
SMST 631 99
LWKR 631 99

From Table 9, total earliness and progressive weig-

hted tardiness, and total earliness and tardiness of the
complete active schedule obtained by the MPWT heu-
ristic method are smaller than that of other modified
priority rules.

9. MPWT METHOD EXPERIMENTAL
RESULTS AND ANALYSIS

Firstly, the scheduling algorithms to generate active
or nondelay schedules are selected. Secondly, in the set of
active or nondelay schedules, the proposed MPWT he-
uristic method is used to solve the conflicting operations

as shown in Figure 7.

Figure 7. Flow diagram of the MPWT heuristic method

In order to compare the MPWT heuristic approach
with other efficient heuristics, the efficient heuristics that
are selected to use in the second experiment are as fol-
lows.

• Batched Apparent Tardiness Cost with Sequence-

dependent Setups (BATCS) rule
• LWKRS rule
• SMST rule

From Figure 8, it is obvious that based on the total
earliness and progressive weighted tardiness, our propo-
sed heuristic (MPWT method) and the modified priority
rule (SMST) are superior to the BATCS (Batched Appa-
rent Tardiness Cost with Sequence-dependent Setups) rule.
The BATCS rule has been modified from the Batched
Apparent Tardiness Cost (BATC) recently presented in
Balasubramanian et al. (2004). The generalization of the
Apparent Tardiness Cost (ATC) has been developed in
many papers (see Pinedo 1995, Jeong and Kim 1998,
Jayamohan and Rajendran 2000, Thiagarajan and Rajen-
dran 2003, and Balasubramanian et al. 2004). Based on
the total earliness and progressive weighted tardiness, the
MPWT heuristic method is superior to other heuristics.

According to Figure 9, the result obtained by the
experiment based on total earliness and tardiness shows
that the MPWT approach is superior to the SMST,
BATCS, and LWKRS rules.

Modified Schedule
Generation Algorithms

(Active / Nondelay
Schedules)

MPWT
Method

Input
Data

0

10000

20000

30000

40000

50000

60000

LWKRS 14391.43 9358.3 25656.77 25075.02 14696.04 52790.77 12639.68 7913.78 9030.75 7693.46

BATCS 12760.11 9944.96 9765.97 8487.55 6938.81 17872.1 10353.38 7592.94 9377.51 8409.3

SMST 5275.89 9677.07 3757 5562.84 6276 10336 10407.01 6781.56 8800.31 6379.12

MPWT 2495.2 6576.1 964 5562.84 5869.79 7614.83 8408.5 6781.56 6751.2 4073.26

1 2 3 4 5 6 7 8 9 10

Figure 8. MPWT experimental results based on total earliness and progressive weighted tardiness

18 Chatpon Mongkalig·Mario T. Tabucanon·Nguyen Van Hop

The next section is the result of the implementation
of the proposed MPWT heuristic method in the case study.
An automotive parts factory is selected to be a case study.
Since the job shop scheduling algorithms are too compli-
cated to calculate manually, the proposed sequential he-
uristic approach is coded in the interactive scheduling so-
ftware designed and developed by using well known
Visual Programming Languages (VPL), i.e. Visual C++
and Visual Basic. Its objective is to demonstrate the ef-
fecttiveness of the proposed scheduling algorithm imple-
mented in the automotive parts factory, which is a job
shop environment. The effectiveness of the implemen-
tation of the proposed sequential heuristic method, with
the consideration of more realistic constraints, will be
investigated in the job shop production system in the next
section.

10. COMPARISON BETWEEN THE MPWT
HEURISTIC METHOD AND OTHER
EFFICIENT HEURISTICS BASED ON
THE SCHEDULING DATA OF THE
CASE STUDY

In the comparison between the proposed MPWT
heuristic method and other efficient heuristics in this sec-
tion, scheduling data are collected from the production
order and manufacturing process form and purchasing
order form. Since the case-study factory production envi-
ronment is a make-to-order production system, each step
of production planning depends on data in the purchasing
order form. These data are in the factory document called
“delivery plan”.

The delivery plan includes customer names, part

numbers, part names, purchasing order numbers, due dates,
part quantity and job quantity needed by customers, ac-
tual delivered job quantity, difference between job quanti-
ty and actual delivered job quantity, and difference bet-
ween part quantity and actual delivered job quantity.

Additionally, the other scheduling data are in the
production order and manufacturing process form. The
production order and manufacturing process form includes
production order number, part number, part name, job
quantity needed by customer due date, detail production
process, machine, setup time, processing time, total pro-
cessing time, and order date. Job data, operation data, and
other details of the job are used in the developed sche-
duling software. In order to make the comparison correct
and conforming with the real production environment,
there are production constraints in the scheduling soft-
ware. For example, resource calendar, inter-machine over-
lapping sequence-dependent setup times are taken into
account. Usually there are three types of working shifts,
depending upon the workload of each machine, as follows:
one shift, two shifts, and three shifts. The machines, which
are often operated 24-hour and used with three working
shifts, are band saws and circular saw. The machines that
work two shifts are CNC two-spindle lathe, CNC turret
lathe, etc. Usually the machines that work one shift are
tapping machines, drills, milling machines, press, manual
lathes, etc. If there are tardiness problems, machine wor-
king time is expanded in the overtime.

The full factorial design with ten sets of the real
scheduling data (replications) are used in the comparison.
The analysis of variance (ANOVA) is summarized in
Table 9. The 5% significance level is used in this experi-
ment. The P-value tests the statistical significance of each
factor. According to the main effect, the P-value for the

0

500

1000

1500

2000

2500

3000

LWKRS 1611 1173 2252 2234 1980 2058 1073 1237 1094 902

BATCS 2648 1053 1194 1047 919 2094 1102 1057 1097 953

SMST 566 1027 964 765 862 958 890 1170 1090 747

MPWT 470 759 937 715 775 662 826 955 939 589

1 2 3 4 5 6 7 8 9 10

Figure 9. MPWT experimental results based on total earliness and tardiness

 Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine overlapping Sequence-dependent Setup Times 19

first factor, which are the modified active and nondelay
schedule generation algorithms, is lower than the signi-
ficance level. Additionally, the P-value for the second
factor, which are heuristics, is lower than 0.05. Therefore,
it can be concluded that both factors have a statistically
significant effect on total earliness and progressive wei-
ghted tardiness. The P-value for interaction between the
factors is lower than the level of significance. Therefore,
there is significant interaction effect based on total
earliness and progressive weighted tardiness.

Figure 10. displays the plot of interactions based on
the total earliness and tardiness.

The experimented scheduling generation algorithms
are as follows.
Algorithm 1 : Modified active schedule generation algorithm
Algorithm 2 : Modified nondelay schedule generation algorithm

The experimented heuristics are as follows.

Heuristic 1 : EDD Heuristic 8 : LWKRS

Heuristic 2 : LWKR Heuristic 9 : MWKRS
Heuristic 3 : MWKR Heuristic 10 : SSTPT
Heuristic 4 : MOPNR Heuristic 11 : SSPT
Heuristic 5 : SMT Heuristic 12 : SMST
Heuristic 6 : SPT Heuristic 13 : BATCS
Heuristic 7 : STPT
Heuristic 14 : Sequential NT-T-E&T heuristic approach
Heuristic 15 : MPWT heuristic method

The sequential NT-T-E&T heuristic approach was

recently proposed by Mongkalig (2005). It can be con-
cluded that schedule generation algorithms and heuristics
generating schedules with the smallest total earliness and
tardiness in the first three approaches are: (i) modified
active schedule generation algorithm using the MPWT
heuristic method; (ii) modified active schedule generation
algorithm using the sequential NT-T-E&T heuristic ap-
proach; and (iii) modified nondelay schedule using the
SMST priority rule. It can be concluded that the modified

Table 10. Analysis of variance for total earliness and progressive weighted tardiness

Factor Type Levels Values
Scheduling Algorithms fixed 2 1 (Active Schedules) 2 (Nondelay Schedules)
Heuristics fixed 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Analysis of Variance using Adjusted Sum of Square for Tests

Source Sum of Square Df Mean Square F-Ratio P-Value

Main Effects
A : Scheduling Algorithms 684,770,221 1 684,770,221.00 19.36 0.000

B : Heuristics 863,166,876 14 61,654,776.86 1.74 0.047
Interaction

AB 942,663,988 14 67,333,142.00 1.90 0.026
Residual 9,548,055,896 270 35,363,169.99

Total 1.2039E+10 299

Figure 10. Interaction Plot based on total earliness and tardiness

To
ta

l E
ar

lin
es

s a
nd

 T
ar

di
ne

ss

20 Chatpon Mongkalig·Mario T. Tabucanon·Nguyen Van Hop

active schedule using the MPWT heuristic method is
superior to other heuristics based on total earliness and
tardiness measure of performance.

Figure 11 shows the plot of interactions based on the
total earliness and progressive weighted tardiness. Sche-
dule generation algorithms and heuristics generating sche-
dules with the smallest total earliness and progressive
weighted tardiness in the first three approaches are: (i)
modified active schedule generation algorithm using the
MPWT heuristic method; (ii) modified active schedule
generation algorithm using the sequential NT-T-E&T
heuristic approach; and (iii) modified active schedule
using the BATCS rule. It can be concluded that the
modified active schedule generation algorithm using the
MPWT heuristic method is superior to other heuristics
based on total earliness and progressive weighted tardi-
ness. Obviously, the proposed MPWT heuristic method is
significantly superior to the BATCS, SMST, and other
efficient priority rules based on: (i) total earliness and
progressive weighted tardiness; and (ii) total earliness and
tardiness.

11. CONCLUSIONS

In this paper, the MPWT heuristic method and new
five priority rules, LWKRS, MWKRS, SMST, SSPT, and
SSTPT, are proposed and used to compare with the
efficient rules, which are the BATCS rule and the priority
rules. There are three important experiments in the rese-
arch. The objective of the first experiment is to determine
the necessity of sequence-dependent setup time conside-
ration when we consider the situations of job shop sche-
duling problems with sequence-dependent setup times,
such as in the plastics, chemical, and automotive parts
industries. The job shop scheduling problems with se-

quence-dependent setup times considered in this paper are
more complex, since the realistic inter-machine overlap-
ping setup times are taken into account. The inter-ma-
chine overlapping sequence-dependent setup can reduce
the waiting time of a succeeding operation since its setup
can be initiated immediately after only a fraction of the
batch parts has completed the preceding operation. The
reason is that there are some parts (work pieces) that have
completed the preceding operation, and they are available
to use in the setup of the succeeding operation. However,
the important constraints of the new job shop problems
with inter-machine overlapping sequence-dependent setup
times are as follows:

(i) the beginning of setup time of the succeeding opera-

tion cannot occur before the completion of machine
setup of the preceding operation since there is no part
that can be used in the setup of the succeeding ope-
ration;

(ii) in realistic production environments, although the setup
time can be overlapped; precedence constraints of the
direct processing times exist. In other words, the di-
rect processing time of the succeeding operation can-
not be overlapped, and it should be started not earlier
than the completion time of the preceding operation.

In addition, the contributions of this paper are not

only the new MPWT heuristic method and new modified
priority rules, but also the new inter-machine overlapping
sequence-dependent setup constraints, and the new sche-
duling performance measures as follows: (i) total progre-
sssive weighted tardiness; and (ii) total earliness and
progressive weighted tardiness. The new scheduling mea-
sures of performance based on progressive weighted tar-
diness penalties are developed and used as the criteria of
the experiments. Currently, satisfaction of customers is

840

1040

1240

1440

1640

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Figure 11. Interaction plot based on total earliness and progressive weighted tardiness To

ta
l E

ar
lin

es
s a

nd
 P

ro
gr

es
siv

e W
ei

gh
te

d
Ta

rd
in

es
s Active

 Nondelay Interaction Plot× 1000

 Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine overlapping Sequence-dependent Setup Times 21

through the quality of products and service. The new
measures of performance have to be solved in a realistic
production system when repeated tardiness of the same
customer order occurs. The total progressive weighted
tardiness of schedules obtained by the modified priority
rules with setup times consideration – LWKRS, MWKRS,
SSPT, SMST, and SSTPT rules is lower than the total
progressive weighted tardiness of schedules obtained by
the classical priority rules. Compared with the classical
standard priority rules, the average total progressive wei-
ghted tardiness of the schedules obtained by the modified
priority rules with sequence-dependent setup times consi-
deration decreases by 6.88%. In addition, the average
total earliness and progressive weighted tardiness of the
schedules obtained by the modified priority rules with
sequence-dependent setup times consideration decreases
by 6.205%. And the average total earliness and tardiness
of the schedules obtained by the modified priority rules
with sequence-dependent setup times consideration dec-
reeases by 2.303%.

The objective of the second experiment is to com-
pare the proposed MPWT heuristic method, the BATCS
rule, and the modified priority rules. The results obtained
by the second experiment indicate that the proposed
MPWT heuristic method is significantly superior to
BATCS, SMST, and LWKRS based on total earliness and
progressive weighted tardiness, and total earliness and
tardiness.

The third experiment aims to compare the MPWT
heuristic method with other efficient heuristics based on
the scheduling data of the case study, which is a real job
shop environment. From the experimental results, the
scheduling generation algorithm and heuristics for solving
the conflicting operations in the set of active and non-
delay schedules have a statistically significant effect on
total earliness and progressive weighted tardiness. There
is significant interaction effect based on (i) total earliness
and progressive weighted tardiness; and (ii) total earliness
and tardiness. The experimental results indicate that the
MPWT heuristic method is superior to the BATCS, SMST,
and other efficient heuristics based on both progressive
weighted tardiness penalties.

In future research, the new job shop scheduling
problem should be considered. In particular, new mea-
sures of performance need to be developed which focus
on customer satisfaction, because this will give the manu-
facturers competitive advantage.

REFERENCES

Balasubramanian, H., Mönch, L., Fowler, J. W. and Pfund,
M. E. (2004), Genetic Algorithms based scheduling
of parallel batch machines with incompatible job
families to minimize total weighted tardiness, Inter-

national Journal of Production Research, 42, 1621-
1638.

Barman, S. (1997), Simple priority rule combinations: an
approach to improve both flow time and tardiness”,
International Journal of Production Research, 35,
2857-2870.

Dearing, P. M. and Anderson, R. A. (1984), Assigning
looms in a textile weaving operation with change-
over limitations, Production and Inventory Manage-
ment, 25, 23-31.

Franca, P. M., Gendreau, M., Laporte, G. and Muller, F. M.
(1996), A tabu search heuristic for the multiprocessor
scheduling problem with sequence dependent setup
times, International Journal of Production Econo-
mics, 43, 79-89.

Giffler, B. and Thompson, G. L. (1960), Algorithms for
solving production-scheduling problems, Operations
Research, 8, 487-503.

Jayamohan, M. S. and Rajendran, C. (2000), New dispa-
tching rules for shop scheduling: a step forward,
International Journal of Production Research, 38,
563-586.

Jeong, K. C. and Kim, Y. D. (1998), A real-time sche-
duling mechanism for a flwexible manufacturing
system: using simulation and dispatching rules, In-
ternational Journal of Production Research, 36,
2609-2626.

Kurz, M. E. and Askin R. G. (2001), Heuristic scheduling
of parallel machines with sequence-dependent set-up
times, International Journal of Production Research,
39, 3747-3769.

Mongkalig, C. (2005), Heuristics for Job Shop Sche-
duling Problems with Progressive Weighted Tar-
diness Penalties and Inter-machine Overlapping
Sequence-dependent Setup Time, Dissertation.

Monma, C. and Potts, C. N. (1989), On the complexity of
scheduling with batch setup times, Operations Re-
search, 37, 798-804.

Picard, J. C. and Queyranne, M. (1978), “The time depen-
dent traveling salesman problem and its application
to the tardiness problem in one-machine scheduling”,
Operations Research, 26, 86-110.

Pinedo, M. (1995), Scheduling Theory, Algorithms, and
Systems, Prentice-Hall, Englewood Cliff, NJ.

Rajendran, C. and Holthaus, O. (1999), A comparative
study of dispatching rules in dynamic flow shops
and job shops, European Journal of Operational
Research, 116, 156-170.

Reeja, M. K. and Rajendran, C. (2000), Dispatching rules
for scheduling in assembly job Shops, International
Journal of Production Research, 38, 2349-2360.

Sumichrast, R. and Baker, K. R. (1987), Scheduling para-
llel processors: an integer linear programming based
heuristic for minimizing setup time, International
Journal of Production Research, 25, 761-771.

22 Chatpon Mongkalig·Mario T. Tabucanon·Nguyen Van Hop

Thiagarajan, S. and Rajendran, C. (2003), Scheduling in
dynamic assembly job-shops with jobs having dif-
ferent holding and tardiness costs, International
Journal of Production Research, 41, 4453-4486.

Uzsoy, R., Martin-Vega, L. A., Lee, C. Y. and Leonard, P.
A. (1991), Production algorithms for semiconductor
test facility, IEEE Transactions on Semiconductor
Manufacturing, 4, 270-280.

Uzsoy, R., Lee, C. Y. and Martin-Vega, L. A. (1992),
Scheduling semiconductor test operations: minimi-
zing maximum lateness and number of tardy jobs on
a single machine, Naval Research Logistics, 39, 369-
388.

Vepsalainen, A. P. J. and Morton, T. E. (1987), Priority
rules for job shops with weighted tardiness costs,
Management Science, 33, 1035-1047.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

