• Title/Summary/Keyword: Semirings

Search Result 53, Processing Time 0.025 seconds

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX SUMS OVER SEMIRINGS

  • Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.301-312
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix pairs which satisfy additive properties with respect to spanning column rank of matrices over semirings.

Ideal Theory in Commutative A-semirings

  • Allen, Paul J.;Neggers, Joseph;Kim, Hee Sik
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.261-271
    • /
    • 2006
  • In this paper, we investigate and characterize the class of A-semirings. A characterization of the Thierrin radical of a proper ideal of an A-semiring is given. Moreover, when P is a Q-ideal in the semiring R, it is shown that P is primary if and only if R/P is nilpotent.

  • PDF

CHARACTERIZATIONS OF ORDERED INTRA k-REGULAR SEMIRINGS BY ORDERED k-IDEALS

  • Ayutthaya, Pakorn Palakawong na;Pibaljommee, Bundit
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • We introduce the notion of ordered intra k-regular semirings, characterize them using their ordered k-ideals and prove that an ordered semiring S is both ordered k-regular and ordered intra k-regular if and only if every ordered quasi k-ideal or every ordered k-bi-ideal of S is ordered k-idempotent.

Valuations on Ternary Semirings

  • Pal, Sumana;Sircar, Jayasri;Mondal, Pinki
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.57-67
    • /
    • 2022
  • In the present study, we introduce a valuation of ternary semiring on an ordered abelian group. Motivated by the construction of valuation rings, we study some properties of ideals in ternary semiring arising in connection with the valuation map. We also explore ternary valuation semirings for a noncommuative ternary division semiring. We further consider the notion of convexity in a ternary semiring and how it is reflected in the valuation map.

ON FUZZY k−IDEALS, k−FUZZY IDEALS AND FUZZY 2−PRIME IDEALS IN Γ−SEMIRINGS

  • Murali Krishna Rao, M.;Venkateswarlu, B.
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.405-419
    • /
    • 2016
  • The notion of Γ-semiring was introduced by M. Murali Krishna Rao [8] as a generalization of Γ-ring as well as of semiring. In this paper fuzzy k-ideals, k-fuzzy ideals and fuzzy-2-prime ideals in Γ-semirings have been introduced and study the properties related to them. Let μ be a fuzzy k-ideal of Γ-semiring M with |Im(μ)| = 2 and μ(0) = 1. Then we establish that Mμ is a 2-prime ideal of Γ-semiring M if and only if μ is a fuzzy prime ideal of Γ-semiring M.