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EUCLIDEAN AND GAUSSIAN SEMIRINGS 

By Louis Dale and Janet D. Pitts 

1. Introduction 

It is well known that every EucIidean domain is Gaussian. This is usually 
verified by first showing that every EucI idean domain is a principal ideal do­

main and then showing that every principal ideal domain is Gaussian. In [1] , 
a EucIidean semiring is defined and the structure of ideals in the semiring is 

given. The purpose of this paper is to prove an analogue of this well known 
result for EucIidean semirings. This is done by first showing that a EucIidean 
semiring is an ‘'almost" principal ideal semiring and then showing. that an 

“ almost" principal ideal semiring is a Gaussian semiring. The definitions and! 

main theorems from [1] are used in this paper. 

2. Euclidean Sernirings and Alrnost PrincipaI IdeaIs 

A set S together with two binary operations called addition (+ ) and multipli­
cation ( .) wiII be calIed a semiring . provided (S, +) is an abelian semigroup 

with a zero, (S , .) is a semigroup, and multiplication distributes over addition 
from the left and right. It is cIear that any ring is a semiring, consequently, 

examples of semirings are quite numerous. If S is a commutative semiring 

with an identity e and every nonzero x ε S has an expression x=x' +e, then S 

is calIed a pyz'nc(양al semz'rz'ng. 

DEFINITION. A Euclidean semirz'ng is a principalsemiring E together with 
a function rþ : E• z+ (the nonnegative integers) satisfying the folIowing prop-
erties: 

(i) rþ(a)=O if and only if a=O 

(ii) If a+b~O， then rþCa+b)르rþ(a) 

(iii) rþCab)~rþCa)rþ(b) 

Civ) For alI a, b~O E E , there exists q, 

or rþCr) <rþCb). 

r E E such that a=qb+r where 1'=0 

A EucI idean semiring is just one of many special cIasses of semirings. The 
cIasses of semirings to be distussed in this paper are. analogues of some of the 
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:special cIasses of rings. 

A commutative semiring S is said to be a semt'-쩌tegral doma쩌 if S contains 
no zero divisors. A EucI idean semiring is a semi-integral domain. For if ab=O 

.and b;6:0, then rþCa)rþCb)=rþCab)=rþCO)=O. But rþCa) and cpCb) are integers and 
rþCb) ;6:0. Consequently, cpCa)=O and it follows that a=O. It is ~lear that the 
set of positive integers is a semi-integral domain. 

An element in a semiring is called a unit if it has an inverse in the semi­

ring. Clearly, if S is a nontrivial semiring, then the set of units in S is a 

multiplicative group. Denote this group by S“ and let S*=S- {이. A semiring 
.s is said to be a semi-division η·Mg if Su=S률. If S is a commutative semi-divi­
ßion ring, then S is said to be a semifield. Any field is a semifield. AIso, the 

set of nonnegative rational numbers and the set of nonnegative real numbers 

are semifields. The final special cIass of semirings is the cIass of almost prin­

cipal ideal semirings. Recall that an ideal is called a principal ideal if it is 

generated by a single element, say a. Denote such an ideal by Ca). 

DEFINITION. An ideal A in a semiring S is said to be an almost prt'ncψ'al z"deal 

if there exists a finite set F such that AUF is a principal ideal. A semiring S 

is called an almost princiPal t"deal semz"rin f! if every ideal in S is almost principaI. 

Clearly every principal ideal domain is an almost principal ideal semiring. 

The set of nonnegative integers, Z+, is an almost principal ideal semiring, as 

J.s pointed out in [lJ. The aim in this section is to show that every EucIidean 

semiring is an almost principal ideal semiring. To do this, some preliminaries 

<concerning units are established. 

LEMMA 2. 1. Let E be a Euc!t"dean semiring. Then μ E E z"s a μm"t zf and only iJ 
φ(μ)= 1. 

PROOF. Suppose μ is a unit. Then there exists u' ε E such that uu'=e. Con­

sequently cpC씨 rþCμ')=rþCuu')=cpCe)=l and since cpCμ) and rþCzι) are positive in­

tegers it follows that rþCu) = 1. Conversely, suppose that rþCμ) = 1. By the division 

algorithm , there exists q, r ε E such that e=qu+r where r=O or cpCμ)>cpCr). 

But l=cpCμ)>cpCr) assures that rþCr)=O and thus r=O. Consequent1y e=qμ and 

iU IS a umt. 

COROLLARY 2.2. Let E be a Eμclt"dean semt'rz"ng. If μ z-s a μ껴ï and x ε E 
dhen μ dz"vides x. 

PRCOF. Lemma 2.1 assures that rþCμ)= 1. The division algorithm gives 
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x=qμ+r where r=O or rþCμ)>rþCr). Consequently, r=Oand x=qμ. 

THOREM 2.3. Let E be a Euclt"dean semt"ring • 

.only tl rþ is bouκded on E. 

E is a semi-dt"vision ring tl and 

PROOF. Suppose E is a semi-division ring. Let x ε E. Then it folIows that 

either x=O or x is a unit. Hence rþCx)=O or rþCx)=l and rþ is bounded on E. 

Conversely, suppose that rþ is bounded on E. Then there exists an integer no 
such that rþCx)드no for all x E E. Let y ε E such that y~O. If rþ(y)=k>l, then 

there exists an integer n such that rþCyn) = [rþCy)]n>no, a contradiction of the 
assumption that rþ is bounded on E. Conseqently, rþCy)=l and it folIows that y 

is a unit. Hence every nonzero element of E is a unit and E is a semi-division 
rIng. 

A cancelIation property relative to the function rþ defined on a EucIidean 
semiring is introduced now. 

DEFINITION. A Euclidean semiring is said to have rþ-cancelIation if a, b, c, 
d 드 E, a+b=c+d and rþCa)=rþCc) , then rþCb)=rþCd). 

+ 
It is cIear that the semiring Z. has the rþ-cancellation property. The following 

lemma'is .. very.useful. 

LEMMA 2.4. Let E be a Euclidean semiring witk rþ-cancellation. Then rþCa)=rþCb) 
if and only if a=bu where μ is a μnt"t. 

P.R!∞F. If a=bu, then rþCa) =rþCbu) =rþCb)rþCu)=rþCb). l=iþCb). On the other hand, 
suppose rþCa)=rþCb). The division aIgorithm gives a=bq+r where r=O or rþCr) < 
rþCb). But rþCa) = rþCbq + r)>rþCbq) =rþCb)rþCq). Consequently, rþCq)=l and q is a 
unit. Thus rþCa)=rþCbq). Now a+O=bq+r and rþ-cancellation gives rþCr) =0. 

Hence r=O and a=bq. 

With this Iemma it is easy to show that in a Euclidean semiring rþ-cancella­

tion impIies canceIlation. 

Just as rings can be classified according to their groups of units, so can semi­
rings. The two classes of semirings to be considered are (1) the cIass with 

a finite group of units and (2) the class in which every nonzero element is a 

unit. The Iatter class is just the cIass of semi-division rings, in which the only 
ideals are the trivial ideals. Hence, these, (2), . are principaI ideal semirings 

and consequently almost principal ideal semirings. Now we restrict our atten­

tion to the former cIass of semirings. 
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Our aim now is td show that every Euclidean seniifing is an almost principat 
ideal semiring. To show that every Euclidean ring is a pfincipa1ideal ring is: 

easy. However. as previously mentioned. every EucIideansemiring is not a 
+ 

principal ideal semiring (e. g.. Z). Proving this resuIt for semirings requires. 

a bit' more effort than for rings. The reader is referred to [1J for the defini-

tion of ideals of the form T a and dT a' 

LEMMA 2.5. If E z's a Ezeclidean semiring wz"tk rþ-cancellaUon and Eu z's fz'mïe. 

then for eack d. a ε E. dTa z-s an alηzost prindPal ideal. 

PROOF. Consider (d)-dTa=dTe-dTa=d{Te-Ta}=d{E-T). We first sho￦ 

that E-Ta is finite. If x ε E-Ta• then rþ(x) <rþ(k). Suppose E-Ta is not fi ‘ 

nite. Then E-Ta must contain an infinite subset of distinct elements. say F= 

{xo' x l' …, Xnt …}. such that rþ(잔)=rþ(전)=m<rþ(a) for aII nonnegative in­

tegers i and j. Let Eu= {ul' U2• …, μt}' Since rþ(xo) =rþ(x1). it foIIows from 

lemma 2.4 that xo=깐I x1 where 1드선드t. AIso rþ(xO)=rþ(x2) and it foIIows that 

XO=Ui, x2 where 1드z·2드t. Continuing in this manner. we obtain xo=깐i Xi for 

each positive integer k. Let s>t. then xo=싼l Xs where 1드js드t. Since Eu has 

only t elements. it foIIows that U; =μ ， for some z'_ with 1드i 드t. Hence U; X 
Z, --Zr - -- ~------r 

=xo=깐r Xr=깐• xr and since 깐. is a unit. if foIIows that xr=xs ' But this con-

tradicts the fact that F contains distinct elements. Consequ.ently. E-T a is 

finite- Now E-Ta being finite assures that d{E-Ta} is finite- Hence (d)-dTa 

is finite and dTaU {(d)-dTa} =(d) is a principal ideal. CosequentIy. dTa is an 

almost principal ideal. 

THEOREM 2:6. If E is a Euc lz"dean semz"ring wt"tk rþ-cancellaUon and E.μ Z·s 

j i1tite. then E is an almost prindPal ideal seηzz.rj%g. 

PROOF. Let A be an ideal in E such that A ;i: {O}. It was shown in [1J that 

A=LUdT a' where dTa is maximal in A. L= {t ε Alrþ(t) <rþ(da)}, and Ln 

dTa= {0} . Let y ε L. Then rþ(y) <rþ(da). Let g be. the greatest common diviso.r 

of y and da. From [1J. it foIIows that there exists c E A such that gT cζA. 

Now dT aismaximal in A. . Consequently, 
. 
gTcCdT a' and it foIlows that å 

divides g. Now g divides y and it foIIows that d divides Y. i. e.y=dx for some 

x ε E. Hence y ε (d); Sihce rþ(d)rþ(x) =rþ(dx) =rþ(y) <rþ(da) =rþ(d)rþ(a). it foIlows 

that rþ(x) <rþ(a) and Y E (d) -dT 
,,' Therefore Lζ(d)-âT"ánd since Cd)-dTa is 
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finite , it follows that L is finite. Lemma 2.5 assures that dTa is an almost 

principal ideal. This fact together with dT aζA=LUdTaC(d) guarantees that 

A is an almost principal ideal. [To see this. let A' denote the complement of 
A in E and note that (d) -A=(d)nA' is finite and AU {(d)-A} =AU {(d)nA'} 

=' {AU(d)} n {AUA'} = (d)nE=(d)]. 

Thus 'the Euclidean semirings that have a finite group of units as well as 

those in which every nonzero element is a unit are almost principal ideal 

sem1rmgs. 

3. Almost Principal Ideals and Gaussian Semirings 

Every . Euclidean . semiring with ø-cancellation is an almost principal ideal 

sèmiring. as was shown previously. Next we show that in a Euclidean semi­

ring with ø-cancellation (i) the cancellation lawholds, and (ii) an almost prin­

cipal ideal has a finite basis. For ifax=ay, then Ø(a)Ø(x)=ØCax)=Ø(ay)=Ø(a) 

Ø(y) and it follows that Ø(x)=Ø(y). Lemma 2.4assures that y=xμ， μ a unit. 

Consequently. ax=ay=a(xμ)=(ax)μ and it follows that u=e. Thus y=xμ=xe=x 

and (i) is shown. Now if A is an ideal in a Euclidean semiring E. then A=L 

UdTa , where.L= {t ε AI Ø(t) <Ø(da)}. From [1], we know that A has basis B 

such that ø is bounded on B. Consequently. the proof of Lemma 2.5 can be 
used to show that B is finite. 

A semigroup G is called Gaussiaχ if (i) G is commutative, has an identity 
and satisfies the cancellation law, and (ii) every non-unit of G has an essen­
tially unique factorization into irreducible elements. 

DEFINITION. A semiring Sis. called Gaussian if its semigroup of nonzero 

elements is Gaussian. 

It is an easy matter to prove that a commutative semigroup G with an iden­

tity and cancellation li:I.W is Gaussian if G contains no infinite proper ascending 

chain of principal ideals and every pair of elements in G has a greatest comrnon 
divisor. (The proof may be fóund in [3] ). This fact is needed to prove the 

next theorem. 

THEOREM 3. 1. Let S be an almost principal z'deal semz'ring μn"tk an identz"ty. 

11 tke cancellaUon law kolds in S, tken S is a Gaussian semz'rz'ng. 

PROOF. Let (a1)ζ(aZ)C(a3)C'… ζ(a싸C … be an ascending chain of prin­

dpal ideals in S and U(ai)=D. Clearly, D is ari ideal in S. For if x1, x2 ε D 
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then X1 ε (aq) and Xz ε (at). Suppose q드t. Then xl' Xz ε (at) and it foIlows that 

x1+xz ε (at) and YX1 ε (at) for any y ε D. This assures that D is an ideal. Since 

S is an almost principal ideal semiring, there exists a finite set F such that 

DUF= (d) for some d E S. Now D has a finite basis, say {d l' dz' …, d k}. 

Consequently, each di ε (aa) for some αi' Let φ be max {αl' αz' …, ai} • Then 

{d l' d z' …, d)C(a) and it foIlows that DC(ap)' . But (a씨CD and consequent­

ly, D=(ap). Now if m능φ， then (am)CD= (ap)C(am) and (am) = (ap)' There­

fore, the chain of ideals is finite. Next, suppose a, b ε D and let (a , b) be 

the ideal generated bya and b. Then (a, b)= {ax+bylx , y ε D}. Again, since 

D is almost principal, thereexists a finite set F' such that (a, b)UF'=(c). 

Now (a)C(c) and (b)C(c) hence c divides a and c divides b. If rεD and r 

divides both a and b then (a)C(r) and (b)C(r). Consequently, (a , b)C(r) and 

since F' is finite, it folIows that (c)C(r). Thus r divides c and c is the great­

est common divisor of a and b. This proves that S is a Gaussian semiring. 

THEOREM 3.2. If E is a Euc/idean semiηtng with rþ-cancellation. then E is a 

Gaussian semiring. 

PROOF. Theorem 2.6 assures that E is an almost principal ideal semiring. 

The remarks at the beginning of this section assure that the canceIlation law 

holds in E and that every ideal in E has a finite basis. Thus by Theorem 3.1 
E is a Euclidean semiring. 
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