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EUCLIDEAN AND GAUSSIAN SEMIRINGS

By Louis Dale and Janet D. Pitts

1. Intreduetion

It is well known that every Euclidean domain is Gaussian. This iIs usually
verified by first showing that every Euclidean domain is a principal ideal do-
main and then showing that every principal ideal domain is Gaussian. In [1],
a Euclidean semiring is defined and the structure of ideals in the semiring is
given. The purpose of this paper is to prove an analogue of this well known
result for Euclidean semirings. This is done by first showing that a Euclidean
semiring is an “almost” principal ideal semiring and then showing that an
“almost” principal ideal semiring is a Gaussian semiring. The definitions and
main theorems from [1] are used in this paper.

" 2. Euclidean Semirings and Almost Principal Ideals

A set S together with two binary operations called addition (+) and multipli-
cation ( - ) will be called a semiring provided (S, +) is an abelian semigroup

with a zero, (S, +) is a semigroup, and multiplication distributes over addition
from the left and right. It is clear that any ring is a semiring, consequently,
examples of semirings are quite numerous. If S is a commutative semiring
with an identity e and every nonzero x & S has an expression x=x"+e¢, then S
is called a principal semiring. '

DEFINITION. A FEuclidean semiring is a principal semiring E together with
a function ¢ : E—Z* (the 'ndnnegative integers) satisfying the following prop-
erties: o '

(i) ¢(@)=0 if and only if a=0

(ii) If .a+b70, then ¢la+b)>d(a)

(i) ¢(ab)=@(a)p(b)

(iv) For all ¢, 020 € E, there exists ¢, » € E such that g= qb—l—r Where r=0

or ¢(r) <@(b).

A Euclidean semiring is just one of many specml classes of sermrmgs The
classes of semirings to be discussed in this paper are analogues of some of the
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special classes of rings.

A commutative semiring S is said to be a semi-integral domain if S contains
o zero divisors. A Euclidean semiring is a semi-integral domain. For if ab=0
and 70, then @(@)¢(d) =¢(ab) =¢(0)=0. But ¢(@) and &(8) are integers and
p(b)#0. Consequently, ¢(@)=0 and it follows that a=0. It is ¢lear that the
set of positive integers is a Semi-integral domain.

An element in a semiring is called a #»nit if it has an inverse in the semi-
ring. Clearly, if S is a nontrivial semiring, then the set of units in S is a
multiplicative group. Denote this group by S, and let S*=S5~-{0}. A semiring
'S 1s said to be a semi-division ring if S,=S*. If S is a commutative semi-divi-
sion ring, then S is said to be a semifield. Any field is a semifield. Also, the
set of nonnegative rational numbers and the set of nonnegative real numbers
are semifields. The final special class of semirings is the class of almost prin-
cipal ideal semirings. Recall that an ideal is called a principal ideal if it is
generated by a single element, say a. Denote such an ideal by (a).

DEFINITION. An ideal A in a semiring S is said to be an al/most principal ideal
if there exists a finite set F such that AUF is a principal ideal. A semiring S
is called an a/most principal ideal semiring if every ideal in S is almost principal.

Clearly every principal ideal domain is an almost principal ideal semiring.
“The set of nonnegative integers, Z%, is an almost principal ideal semiring, as
is pointed out in [1]. The aim in this section is to show that every Euclidean
semiring is an almost principal ideal semiring. To do this, some preliminaries
concerning units are established. |

LEMMA 2.1. Let E be a Euclidean semiring. Then u € E is a unit if and only if
$(u)=1. |

PROOF. Suppose # is a unit. Then there exists #” &€ E such that »«"=e. Con-
sequently ¢(uw) o(u’) =¢(uu’)=¢(e)=1 and since ¢(x) and ¢(«’) are positive in-
tegers it follows that ¢(#)=1. Conversely, suppose that ¢(«)=1. By the division
algorithm, there exists q, » € E such that e=qu+7r where =0 or &¢(u)>@¢(r).
But 1=¢(w)>¢(r) assures that ¢(r)=0 and thus r=0. Consequently e=qu# and
2« 1s a unit.

COROLLARY 2.2. Let E be a Euclidearn semiring. If u is a unit and 1 € E
dhen u divides x.

PRCOF. Lemma 2.1 assures that @(x)=1. The division algorithm gives
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x=qu+r where =0 or ¢(u)>¢(r). Consequently, =0 and xr=gu.

THOREM 2.3. Let E be a Euclidean semiring. E is a semi-division ring if and
only if ¢ is bounded on E. | o

PROOF. Suppose E is a semi-division ring. Let x € E. Then it {ollows that
either =0 or z is a unit. Hence ¢(x)=0 or ¢(x)=1 and ¢ is bounded on E.

Conversely, suppose that ¢ is bounded on E. Then there exists an integer 7,
such that ¢(x)<m, for all xr &€ E. Let y € E such that y#0. If ¢(y)=£>1, then

there exists an integer # such that ¢(»")=[#(»)]1">n, a contradiction of the
assumption that ¢ is bounded on E. Conseqently, ¢(¥)=1 and it follows that y

is a unit. Hence every nonzero element of E is a umt and E is a semi-division
ring. |

A cancellation property relative to the function ¢ defined on a Euchdean
semiring is introduced now.

 DEFINITION. A Euclidean semiring is said to have ¢-cancellation if e, b, ¢,
dc E, at+b=c+d and qﬁ(a):gé(c) then @¢(6)=0¢(d).

It is clear that the semiring Z" has the d-cancellation property. The following
lemma 1s-very useful.

LEMMA 2.4. Let E be a Euclidean semiring with qé-cancel lation. Then ¢(a)=d¢(b)
if and only if a=bu where u is a unit. |

PROOF. If a=bu, then ¢(@)=@(bu)=¢(d)d(u)=0¢(b)+1=¢4(b). On the other hand,
suppose @(a)=0¢(b). The division algorithm gives a=bg+7 where =0 or ¢(») <
¢(b). But ¢(@)=¢d(bg+r)>¢d(bg)=¢(b)¢p(q). Consequently, ¢(g)=1 and ¢ is a
unit. Thus @#(a)=¢(bg). Now a+0=bg+r and ¢-cancellation gives @(r)=0.
Hence =0 and a=#bq.

With this lemma it i1s easy to show that in a Euclidean semiring ¢@-cancella-
tion implies cancellation.

Just as rings can be classified according to their groups of units, so can semi-
rings. The two classes of semirings to be considered are (1) the class with
a finite group of units and (2) the class in which every nonzero element is a
unit. The latter class is just the class of semi-division rings, in which the only
ideals are the trivial ideals. Hence, these, (2), are principal ideal semirings
and consequently almost principal ideal semirings. Now we restrict our atten-
tion to the former class of semirings.
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Our aim now is to show that every Euclidean semiring is an almost principal
ideal semiring. To show that every ‘Euclidean ring is a principal ideal ring is
easy. However, as previously mentioned, every Euclidean semiring is not a
principal ideal semiring (e.g., Zﬂ_'). Proving this result for semirings requires.
a bit ‘more effort than for rings. The reader is referred to _[Ii] for the defini-
tion of ideals of the form T, and dT,. o '

LEMMA 2.5. If Eisa Euclidean semiring with ¢-cancellation and E, is finite,
then for eachd,a = E, dT, is an almost principal ideal. |

PROOF. Consider (d)—dTa=dTe—-dTﬂ=d{Te—Ta}=d{E—Ta}. We first show
that E—~T, is finite. If y € E—T,, then ¢(r) <¢(k). Suppose E—~T is not fi-
nite. Then E—T, must contain an infinite subset of distinct elements, say #=
E A :tﬂ, ...}, such that geﬁ(xz-):gé(xj):m(gé(a) for all ﬁonnegative in-
tegers 7 and j. Let E, ={u,, Ugs ***s Uyt Since qﬁ(xo)-—fgaﬂ(xl), it follows fromr
lemma 2.4 that Xo=U; % where 1<7,<{. Also QS(xO)'——-qé(xz)‘ and it fdllows that

x,=u; %, where 1<z,</. Continuing in this manner, we obtain Xo=U; X, for

each positive integer %.. Let s>?, then Xy=U; % where lﬁz'sgt. Since E, has

only ¢ elements, it follows that », =#; for some 7, with 1<%, <. Hence ; %
=x,=u; ¥, =u; ¥, and since #; 1is a unit, if follows that x =x,. But this con-
tradicts the fact that F contains distinct elements. Consequently, E—Ta is
finite. Now E—-T, being finite assures that d{E—-T} is finite. Hence (d)—dT,
is finite and dTaU{(d)—dT 4 =(d) 1s a principal ideal. Cosequently, 'dT&_ iS an
almost principal ideal.

THEOREM 2:6. If E is a Euclidean semiving with g-cancellation and E, is
finite, then E is an almost principal ideal semiring. o

PROOF. Let A be an ideal in E such that A#E{O}. It was shown in [1] that
A=LUdT , where dT, is maximal in 4, L={{&€A|¢() <¢(da)}, and LN
aT = {0}. Let y& L. Then ¢(y)<d(da). Let g be the greatest common divisor
of ¥ and da. From [1], it follows that there exists c € 4 such that gT' . CA.
Now dT,is maximal in A. Consequently, gT,CdT, and it follows that d
divides g. Now g divides y and it follows that 4 divides ¥, i.e. v=dx for some
x & E. Hence y € (d); Since d(d)od(x) ﬁ‘é:(dx)=¢(y) <¢5(da)-—-:¢(d)g5(:a); it follows
that ¢(x) <¢(a) and y € (d)—dT,. Therefore Lé(d)—-kaﬂ'and since (d)—dT, is
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finite, it follows that L is finite. Lemma 2.5 assures that 4T, is an almost

principal ideal. This fact together with T CA LUdT C(d) guarantees that
A is an almost principal ideal. [To see this, let A’ denote the complement of
A in E and note that (d)—A=(d)NA’ is finite and AU{(d’) A} =AU {(d)NA"}
={AU@D}N{AUA} =@ NE=(d)].
Thus the Euclidean semirings that have a finite group of units as well as
those in which every nonzero element is a unit are almost principal ideal

semirings.
3. Almost Principal Ideals and Gaussian Semirings

Every Euclidean semiring with ¢-cancellation is an almost principal ideal
semiring, as was shown previously. Next we show that in a Euclidean semi-
ring with ¢-cancellation (i) the cancellation law holds, and (ii) an almost prin-
cipal ideal has a finite basis. For if ax=ay, then ¢(a)d(x)=0d(ax)=0¢(ay)=¢(a)
¢(y) and it follows that ¢(x)=¢(y). Lemma 2.4 assures that y=zxu, # a unit.
Consequently, ex=ay=a(xu)=(ax)u and it follows that #=e. Thus y=xu=zxe=x
and (1) is shown. Now if A i1s an ideal in a Euclidean semiring E, then A=L
UdT,, where. L={t € A|¢(¢)<¢(de)}. From [1], we know that A has basis B
such that ¢ is bounded on B. Consequently, the proof of Lemma 2.5 can be
used to show that B 1S f1n1te

A semigroup G is called Gaussian 1f (1) G is commutative, has an identity
and satisfies the cancellaticn law, and (ii) every non-unit of G has an essen-
tially unique factorization into irreducible elements.

DEFINITION. A semiring S .is- called Gaussian if its semigroup of nonzero
elements is Gaussian.
It is an easy matter to prove that a commutative semigroup G with an iden-

tity and cancellation law is Gaussian if G contains no infinite proper ascending

chain of principal ideals and every pair of elements in G has a greatest common
divisor. (The proof may be found in [3]) ThlS fact is needed to prove the

next theorem.

THEOREM 3.1. Let S be an almost principal ideal semiring with an identity.
If the cancellation law holds in S, then S is a Gaussian semiring.

‘PROOF. Let (czl)C(dé)C(@)C*--- C(a,)C - be an ascending chain of prin-
cipal ideals in S and U(e;)=D. Clearly, Dis an ideal in' S. For if X, X, & D



22 Louis Dale and Janet D. Piits

then x, € (¢,) and x, € (a). Suppose ¢<¢. Then #;, x, &€ (¢) and it follows that
2+2, € (a,) and yx, € (a) for any y € D. This assures that D is an ideal. Since
S is an almost principal ideal semiring, there exists a finite set F such that
DUF=(d) for some d €S. Now D has a finite basis, say {d;, d, -, d,}.
Consequently, each d; & (am) for some ;. Let p be max {a;, ay, -, “,}' Then
{d,, do, -, d.}C(aﬁ) and it follows that DC(ap). But (ap)CD and consequent-
ly, D———(ap)_ Now if m>p, then (¢ )CD= (czp)C(am) and (am)=(ap). There-
fore, the chain of ideals is finite. Next, suppose ¢, b& D and let (¢ ,b) be
the ideal generated by e and . Then (a, b)={ax+bylx, y = D}. Again, since
D is almost principal, there exists a finite set F’ such that (a, H)UF =(c).
Now (a)C(c) and (6)C(c) hence ¢ divides @ and ¢ divides 8. If »&D and »
divides both ¢ and & then (&)C(r) and (b)C(r). Consequently, (e,b)C(r) and
since F’ is finite, it follows that (¢)C(7). Thus » divides ¢ and ¢ is the great-
est common divisor of ¢ and 5. This proves that S is a Gaussian semiring.

THEOREM 3.2. If E is a Euclidean semiring with ¢-cancellation; then E is a
Gaussian semiring.

PROOF. Theorem 2.6 assures that E is an almost principal ideal semiring.

The remarks at the beginning of this section assure that the cancellation law

holds in £ and that every ideal in E has a finite basis. Thus by Theorem 3.1
E is a Euclidean semiring.
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