DIRECT SUMS OF SEMIRINGS AND THE KRULL-SCHMIDT THEOREM

By Louis Dale

1. Introduction

P. Allen and W. Windham in [1] discussed briefly commutative semirings with the property that any two ideals are related. This property of ideals being related turns out to be a key to generalizing direct sums of semirings. The purpose of this paper is to prove necessary and sufficient conditions for a semiring to be a direct sum of ideals and to prove an analogue of the KrullSchmidt theorem for semirings.

2. Basic concepts

DEFINITION 2.1. A set R together with two binary operations (+) and (.) is called a semiring provided; (1) $(R,+)$ is a commutative semigroup with a zero, (2) (R, \cdot) is a semigroup, and (3)(\cdot) distributes over (+) from both the left and the right. If (R, \cdot) is a commutative semigroup, R is called a commutative semiring. If there is an elemnt $e \in R$ such that $e r=r e=r$ for all $r \in R$ then R is called a semiring with an identity.

DEFINITION 2.2. A non-empty subset H of a semiring R is called an ideal in R if, (1) H is closed under (+), and (2). $H R \subset H$ and $R H \subset H$.

DEFINITION 2.3. Let R_{1} and R_{2} be semirings. A mapping $\eta: R_{1} \rightarrow R_{2}$ is called a homomorphism if $(a+b) \eta=a \eta+b \eta$ and $(a b) \eta=(a \eta)(b \eta)$ for all $a, b \in R$. As usual, η is called an isomorphism if η is both one-to-one and onto.

DEFINITION 2.4. A homomorphism $\eta: R_{1} \rightarrow R_{2}$ is called semimaximal if $r_{1} \eta=r_{2} \eta$ implies that $r_{1}+\operatorname{ker} \eta \cap r_{2}+$ ker $\eta \neq \phi$.

DEFINITION 2.5. A homomorphism $\eta: R \rightarrow R$ will be called complete if η is semimaximal and there is an integer $t \geq 1$ such that $R=R \eta^{t}+\operatorname{ker} \eta^{t}$.

DEFINITION 2.6. Let R be a semiring and H_{1} and H_{2} ideals in $R . H_{1}$ is said to be related to H_{2} if $h_{1}+h_{2}=h_{1}{ }^{\prime}+h_{2}{ }^{\prime}, \quad h_{i}, h_{i}{ }^{\prime} \in H_{i}$, implies that there are $a, b \equiv$ $H_{1} \cap H_{2}$ such that $h_{1}+a=h_{1}{ }^{\prime}+b$.

EXAMPLE 2.7. Let R be the set of non-negative integers $\cup\{\infty\}$. Define $a+b=$ $\max \{a, b\}$ and $a b=\min \{a, b\}$. Clearly R is a commutative semiring with an identity and any two ideals in R are related, since an ideal in R has the form $H=$ $\{a \in R \mid a<r\}$, where $r \in R$. Now let H be an ideal in R and define $\eta: R \rightarrow R$ by $\eta(a)=0$ if $a \in H$ and $\eta(a)=a$ if $a \in R-H$. It is clear that η is a homomorphism and ker $\eta=H$. Now $R \eta=\{R-H\} \cup\{0\}$. Consequently, $R=R \eta+k e r \eta$ and η is complete.

3. Direct sums of semirings

Let $R_{1}, R_{2}, \cdots, R_{n}$ be n commutative semirings with identities $e_{1}, e_{2}, \cdots, e_{n}$ respectively. Consider the set $R=\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right) \mid a_{i} \in R_{i}\right\}$. In R, define (a_{1}, $\left.a_{2}, \cdots, a_{n}\right)=\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ if and only if $a_{i}=b_{i}$ for $1 \leq i \leq n$. Further, for $a=$ $\left(a_{1}, \cdots, a_{n}\right)$ and $b=\left(b_{1}, \cdots, b_{n}\right)$, define $a+b=\left(a_{1}+b_{1}, \cdots, a_{n}+b_{n}\right)$ and $a b=\left(a_{1} b_{1}, \cdots, a_{n} b_{n}\right)$. It is easily checked that R is a commutative semiring with identity $e=\left(e_{1}\right.$, \cdots, e_{n}). The semiring R is called a direct sum of the semiring R_{1}, \cdots, R_{n} and is denoted by $R=R_{1} \oplus R_{2} \oplus \cdots \oplus R_{n}$.

THEOREM. 3.1. A semiring R is isomorphic to a direct sum $R_{1} \oplus R_{2} \oplus \cdots \oplus R_{n}$ if and only if R contains ideals S_{i}, each with an identity, such that
(1) $R=\sum S_{i}$,
(2) $S_{i} \cap\left(\sum_{i \neq j} S_{j}\right)=0$ and
(3) S_{i} is related to $\left(\sum_{i \neq j} S_{j}\right)$.

PROOF. Let $R=R_{1} \oplus \cdots \oplus R_{n}$ and $S_{i}=\left\{a_{i}^{\prime}=\left(0, \cdots, 0, a_{i}, 0, \cdots, 0\right) \mid a_{i} \in R_{i}\right\}$. It is easily checked that S_{i} is a subsemiring of R with identity $e_{i}^{\prime}=\left(0, \cdots, e_{i}, \cdots\right.$, 0), and that S_{i} is an ideal in R. Now from $x \in R$, it follows that $x=\left(a_{1}, a_{2}\right.$, $\left.\cdots, a_{n}\right)=\left(a_{1}, 0, \cdots, 0\right)+\left(0, a_{2}, 0, \cdots, 0\right)+\cdots+\left(0, \cdots, 0, a_{n}\right)=a_{1}^{\prime}+a_{2}^{\prime}+\cdots+a_{n}^{\prime}$. Consequently $R=\sum S_{i}$. Next sppose that $x \in S_{i} \cap\left(\sum_{i \neq j} S_{j}\right)$. Then ($0, \cdots, a_{i}, \cdots 0$) $=x$ $=\left(a_{1}, \cdots, a_{i-1}, 0, a_{i+1}, \cdots a_{n}\right)$ and it follows that $a_{i}=0$ for each i. Consequently $x=0$ and $S_{i} \cap\left(\sum_{i \neq j} S_{j}\right)=0$. Now suppose that a_{i}^{\prime} and $b_{i}^{\prime} \in S_{i}, x$ and $y \in\left(\sum_{i \neq j} S_{j}\right)$ and $a_{i}{ }^{\prime}+x=b_{i}{ }^{\prime}+y$. Hence $\left(x_{1}, \cdots, x_{i-1}, a_{i}, x_{i+1}, \cdots, x_{n}\right)=\left(y_{1}, \cdots, y_{i-1}, b_{i}\right.$, y_{i+1}, \cdots, y_{n}). Thus $x_{j}=y_{j}$ for each j and $a_{i}=b_{i}$. But $S_{i} \cap\left(\sum_{i \neq j} S_{j}\right)=0$. So $a_{i}{ }^{\prime}+0$ $=b_{i}{ }^{\prime}+0$ and S_{i} is related to ($\sum_{i \neq j} S_{j}$). Conversely, suppose that R is a semiring containing ideals S_{i} such that (1), (2), and (3) hold. Let $S=S_{1} \oplus \cdots \oplus S_{n}$ and define a mapping $\phi: S \rightarrow R$ by $\phi\left(a_{1}, \cdots, a_{n}\right)=a_{1}+a_{2}+\cdots+a_{n}$. To show that ϕ is an isomorphism. First, $\phi\left[\left(a_{1}, \cdots, a_{n}\right)+\left(b_{1}, \cdots, b_{n}\right)\right]=\phi\left[\left(a_{1}+b_{1}, \cdots, a_{n}+b_{n}\right)\right]=$ $a_{1}+b_{1}+\cdots+a_{n}+b_{n}=\left(a_{1}+a_{2}+\cdots+a_{n}\right)+\left(b_{1}+\cdots+b_{n}\right)=\phi\left(a_{1}, \cdots, a_{n}\right)+\psi\left(b_{1}, \cdots, b_{n}\right)$.

Next observe that $a_{i} a_{j}=0$ if $i \neq j$. To see this note that $a_{i} a_{j} \in S_{j}$ and $a_{i} a_{j}$ $\in S_{i}$. But $S_{i} \cap S_{j}=0$ if $i \neq j$. Consequently $a_{i} a_{j}=0$. Thus $\phi\left[\left(a_{1}, \cdots, a_{n}\right)\left(b_{1}, \cdots, b_{n}\right)\right]$ $=\psi\left[a_{1} b_{1}, \cdots, a_{n} b_{n}\right]=a_{1} b_{1}+\cdots+a_{n} b_{n}$. and $\phi\left(a_{1}, \cdots, a_{n}\right) \psi\left(b_{1}, \cdots, b_{n}\right)=\left(a_{1}+\cdots+a_{n}\right)$. $\left(b_{1}+\cdots+b_{n}\right)=a_{1} b_{1}+a_{2} b_{2}+\cdots a_{n} b_{n}$. Consequently $\phi\left[\left(a_{1} \cdots, a_{n}\right)\left(b_{1}, \cdots, b_{n}\right)\right]=\phi\left(a_{1}, \cdots\right.$. $\left.a_{n}\right) \cdot \psi\left(b_{1}, \cdots, b_{n}\right)$ and ϕ is a semiring homomorphism. Now let $x \in R$. By (1), x $=a_{1}+\cdots+a_{n}$ where $a_{i} \in S_{i}$. Consequently, $\left(a_{1}, \cdots, a_{n}\right) \in S, \phi\left(a_{1}, \cdots, a_{n}\right)=x$ and ϕ is onto. Next suppose that $\psi\left(a_{1}, \cdots, a_{n}\right)=\psi\left(b_{1}, \cdots, b_{n}\right)$. Then $a_{1}+a_{2}+\cdots+a_{n}$ $=b_{1}+\cdots+b_{n}$. Since S_{i} is related to $\left(\sum_{i \neq j} S_{j}\right)$ and $S_{i} \cap\left(\sum_{i \neq j} S_{i}\right)=0$, it follows that $a_{i}=b_{i}$ for each i. Therefore $\left(a_{1}, \cdots, a_{n}\right)=\left(b_{1}, \cdots, b_{n}\right)$ and ψ is one to one. Consequently, ψ is an isomorphism and the proof is complete.

THEOREM. 3.2. If R is a semiring and R contains ideals R_{i} such that cach $x \in R$ has a unique representation $x=x_{1}+\cdots+x_{n}$ where $x_{i} \in R_{i}$, then $R=R_{1} \oplus \cdots \oplus$, R_{n}.

PROOF. From $x=x_{1}+\cdots+x_{n}$, it follows that $R=\sum R_{i}$. Now suppose $x \in R_{2} \cap$ ($\sum_{i \neq j} R_{j}$). Then $x=x_{i}$ and $x=x_{1}+\cdots+x_{i-1}+0+x_{i+1}+\cdots+x_{n}$. But the representation for x is unique. Consequently, $x_{i}=0$ for each i. Thus $x=0$ and $R_{i} \cap \sum_{i \neq j} R_{j}=0$. If a and $b \in R_{i}, x$ and $y \in\left(\sum_{i \neq j} R_{j}\right)$, and $a+x=b+y$, then it follows from uniqueness of representation and $R_{i} \cap\left(\sum_{i \neq j} R_{j}\right)=0$ that $a=b$. Thus R_{i} is related to. ($\sum_{j \neq i} R_{j}$). Therefore $R=R_{1} \oplus \cdots \oplus R_{n}$ by theorem 3.1.

If R_{1}, \cdots, R_{n} are semirings, then $R=R_{1} \oplus \cdots \oplus R_{n}$ is called an external direct sum. If R is semiring S_{1}, \cdots, S_{n} are ideals in R such that $R=S_{1} \oplus \cdots \oplus S_{n}$, then R is called an internal direct sum.

4. Projections

Let $R=R_{1} \oplus \cdots \oplus R_{n}$ be an internal direct sum of semirings and define $\varepsilon_{i}: R \rightarrow R_{i}$ by $x \varepsilon_{i}=x_{i}$ for $x=x_{1}+\cdots+x_{n}$. It is clear that ε_{i} is a semiring homomorphism. If $x_{i} \in R_{i}$, then $x_{i} \varepsilon_{i}=x_{i}$ If $x_{j} \in R_{j}$ and $i \neq j$, then $x_{j} \varepsilon_{i}=0$. Also $x \varepsilon_{i}^{2}=x_{i} \varepsilon_{i}=x_{i}$ and $\varepsilon_{i}=\varepsilon_{i}^{2}$. Consequently, ε_{i} is idempotent. Denote the endomorphism $x \rightarrow 0$ for all $x \in R$ by 0_{R} and the identity endomorphism by 1_{R}. Then it is clear that $\varepsilon_{i} \varepsilon_{j}$ $=0_{R}$ if $i \neq j$. Now suppose $x=x_{1}+\cdots+x_{n}, y=y_{1}+\cdots+y_{n}$ and $x \varepsilon_{i}=y \varepsilon_{i}$. Then $x_{i}=y_{i}$. Now $x^{\prime}=x_{1}+\cdots+x_{i-1}+x_{i+1}+\cdots+x_{n}$ and $y^{\prime}=y_{1}+\cdots+y_{i-1}+y_{i+1}+\cdots+y_{n}$ belong to ker ε_{i}. Also $y+x^{\prime} \in y+\mathrm{ker}_{i}$ and $x+y^{\prime} \in x+\mathrm{ker}_{i}$. But $y+x^{\prime}=x+y^{\prime}$ since $x_{i}=y_{i^{\prime}}$.

Consequently $x+\operatorname{ker} \varepsilon_{i} \cap y+\operatorname{ker} \varepsilon_{i} \neq \phi$ and ε_{i} is semimaximal. Since $\operatorname{ker} \varepsilon_{i}=R_{1}+\cdots$ $+R_{i-1}+R_{i+1}+\cdots+R_{n}$ and $R \varepsilon_{i}=R_{i}$, it follows that $R=R \varepsilon_{i}+\operatorname{ker} \varepsilon_{i}$ and ε_{i} is complete. Thus ε_{i} is idempotent, semimaximal and complete. An endomorphism of a semiring that is idempotent, semimaximal and complete will be called a projection. It is straightforward to show that a projection on a semiring determines an internal direct sum.

5. Decomposable semirings

DEFINITION 5.1. A semiring is decomposable if $R=R_{1} \oplus R_{2}$ and each R_{i} is a proper ideal in R. If R is not decomposable, then R is called indecomposable.

THEOREM 5.2. A semiring R is decomposable if and only if there are projections of R that are not 0_{R} and not 1_{R}.

PROOF. Suppose $R=R_{1} \oplus R_{2}$ is decomposable. Then $R_{i} \neq 0$ and $R_{i} \neq R$, and it follows that the projections $\varepsilon_{i} 7^{=1}$ and $\varepsilon_{i} \neq 0_{R}$. Conversely, suppose ε is a projection of R such that $\varepsilon \neq 1_{R}$ and $\varepsilon \neq 0_{R}$. Let $R \varepsilon=R_{1}$ and $\operatorname{ker} \varepsilon=R_{2}$. Since ε is a projection, $R=R \varepsilon+$ ker $\varepsilon=R_{1}+R_{2}$. It is clear that R_{1} and R_{2} are ideals in R. Now suppose that $x \in R_{1} \cap R_{2}$. Then $x=y \varepsilon$ for some $y \in R$ and $x \varepsilon=0$. Hence $x=y \varepsilon=y \varepsilon^{2}$ $=x \varepsilon=0$ and $R_{1} \cap R_{2}=0$. If x_{1} and $y_{1} \in R_{1}, x_{2}$ and $y_{2} \in R_{2}$, and $x_{1}+x_{2}=y_{1}+y_{2}$, then $\left(x_{1}+x_{2}\right) \varepsilon=\left(y_{1}+y_{2}\right) \varepsilon$. But $x_{2} \varepsilon=0=y_{2} \varepsilon$ and it follows that $x_{1} \varepsilon=y_{1} \varepsilon$. Consequently, $x_{1}=y_{1}$ and $R_{1} \cap R_{2}=0$ gives that R_{1} and R_{2} are related. Therefore theorem 3.1 assures that $R=R_{1} \oplus R_{2}$.

DEFINITION 5.3. A semiring R satisfies the descending chain condition if $R_{1} \supset R_{2} \supset \cdots \supset R_{n} \supset \cdots$ is a decreasing sequence of ideals in R, then there is an integer N such that $R_{N}=R_{N+1}=\cdots$

It is easy to show that any non-trivial semiring that satisfies the descending chain condition can be expressed as a direct sum of a finite number of indecomposable semirings.

6. The Krull-Schmidt theorem

A uniqueness theorem will now be given for direct sums of indecomposable semirings.
DEFINITION 6.1. A semiring R is said to satisfy the ascending chain condition if $R_{1} \subset R_{2} \subset \cdots \subset R_{n} \subset \cdots$ is an ascending sequence of ideals in R, then there is an integer N such that $R_{N}=R_{N+1}=\cdots$

DEFINITION 6.2. An endomorphism η of a semiring R is called normal if the image of an ideal under η is an ideal.

LEMMA 6.3. If $\eta: R \rightarrow S$ is a semimaxal semiring homomorphism and ker $\eta=$ $\{0\}$, then η is one-to-one.
PROOF: Suppose $a \eta=b \eta$. Since η is semimaximal it follows that $a+\mathrm{ker} \eta \cap b+\mathrm{ker} \eta$ $\neq \phi$. But ker $\eta=\{0\}$. Consequently, $a+\mathrm{ker} \eta=b+\mathrm{ker} \eta$ and $a=b$. Therefore η is one-to-one.

THEOREM 6.4. Let R be a semiring that satisfies both chain conditions. If η is a normal semimaxial endomorphism of R such that η is one to one or on:o, then η is an automorphism.

Proof. Assume that η is one to one. If $R \eta^{t-1}=R \eta^{t}$ for some t, any $y \in R \eta^{t-2}$ is such that $y \eta=x \eta^{\mathrm{t}}=\left(x \eta^{t-1}\right) \eta$ for some x. Consequently, since η is one-to-one, $y=x \eta^{t-1}$ $\in R \eta^{t-1}$ and $R \eta^{t-2}=R \eta^{t-1}$. Continuing in this manner we obtain $R=R \eta$. Consequently, if $R \supset \mathrm{R} \eta$ and η is normal, then $R \supset R \eta \supset R \eta^{2} \supset \cdots$ is an infinite proper decreasing sequence of ideals in R. A contradiction, since R satisfies the descending chain condition. Therefore if η is one-to-one, $R=R \eta$ and η is an automorphism. Now suppose that $R \eta=R$ and $K_{i}=k e r \eta^{i}$ for $i=0,1,2, \cdots$. Letting $\eta^{0}=0$ gives $K_{0}=\{0\}$. It is easy to see that $K_{t-1} \subset K_{t}$ and each K_{t} is an ideal in R. Suppose $K_{r-1}=K_{r}$ for some r and $z \in K_{r-1}$. Write $z=y \eta$. Then $0=z \eta^{r-1}=(y \eta) \eta^{r-1}=y \eta^{r}$. Hence $y \eta^{r-1}=0$ and $z \eta^{r-2}=(y \eta) \eta^{r-2}=y \eta^{r-1}=0$. Consequently, $z \in K_{r-2}$ and it follows that $K_{r-2}=K_{r-1}$. Continuing in this manner one obtains $\{0\}=K_{0}=K_{1}=K_{2}$ $=\cdots$ Hence either $K_{0}=\{0\}$ or $K_{0} \subset K_{1} \subset K_{1} \subset K_{2} \subset \cdots$ is an ascending sequence of ideals in R. Since R satisfies the ascending chain condition we must have $K_{0}=\{0\}$. Since η is semimaximal it follows that η is one to one and hence an automorphism.

DEFINITION 6.5. If η is an endomorphism of a semiring, the set of elements z such that $z \eta^{t}=0$ for come integer t is called the radical of η. It is clear that the radical of η is the union of all ker $\eta^{i}, i=0,1,2, \ldots$
THEOREM 6.6 (Fittings lemma). Let R be a semiring that satisfies both chain conditions and η a normal complete endomorphism of R. Then $R=H \oplus K$ where K is the radical of η and $H=H \eta$.
PROOF. Let $K_{i}=\mathrm{ker} \eta^{i}$ and consider ascending chain $K_{0} \subset K_{1} \subset \cdots$ and the descending chain $R \supset R \eta \supset R \eta^{2} \supset \cdots$. Since η is normal, each chain is a chain of ideals
in R. By the chain conditions on R, there are integers r and s such that $R \eta^{\gamma}=$ $R \eta^{r+1}=\cdots$ and $K_{s}=K_{s+1}=\cdots$. Let $H=G \eta^{r}$ and $K=K_{s}$. Since η is complete, there is an integer t such that $R=R \eta^{t}+\operatorname{ker} \eta^{t}$. Let $p=\max \{r, s, t\}$. It follows that $R=R \eta^{p}+\operatorname{ker} \eta^{p}=H+K$ and K is the radical of η. Now let $\omega \in H \cap K$. Then $\omega=$ $z \eta^{p}$ for suitable $z \in R$ and $\omega \eta^{p}=0$. But $0=\omega \eta^{p}=z \eta^{2 p}$ and it follows that $z \in K$. Consequently, $0=z \eta^{p}=\omega$ and $H \cap K=0$. Suppose $x_{1}, x_{2} \in H, y_{1}, y_{2} \in K$ and $x_{1}+y_{1}=$ $x_{2}+y_{2}$. Then $\left(x_{1}+y_{1}\right) \eta_{1}^{p}=\left(x_{2}+y_{2}\right) \eta^{p}$. Thus $x_{1} \eta_{1}^{p}+y_{1} \eta_{\eta}^{p}=x_{2} \eta^{p}+y_{2} \eta^{p}$ and $x_{1} \eta^{p}=x_{2} \eta^{p}$ since $y_{1}, y_{2} \in K$. But $H=R \eta^{r}=R \eta^{r+p}=\left(R \eta^{r}\right) \eta^{p}=H \eta_{\eta}^{p}$ and it follows from theorem 6.4 that η^{p} is an automorphism. Thercfore η^{p} is one to one and $x_{1}=x_{2}$. Consequently, H is related to K since $H \cap K=0$. Therefore it follows from theorem 3.1 that $R=H \oplus K$.

COROLLARY 6.7. If R is an indecomposable semiring that satisfies both chain conditions, then any normal complete endomorphism of R is either nilpotent or an automorphism.

PROOF. From theorem 6.6, $R=H \oplus K$ where $H=H \eta$ and K is the radical of η. If R is indecomposable, either $R=H$ or $R=K$. If $R=H=H \eta$, then theorem 6.4 assures that η is an automorphism. If $R=K$, then η is nilpotent.

COROLLARY 6.8. Let R be an indecomposable semiring that satisfies both chain conditions and η_{1} and η_{2} be normal complete endomorphisms. If $\eta_{1}+\eta_{2}$ is an. endomorphism, then $\eta_{1}+\eta_{2}$ is nilpotent.

The proof of corollary 6.8 is identical to the one for rings or groups and is: omitted here.

THEOREM 6.9. (Krull-Schmidt theorem) Let R be a semiring that satisfies both: chain conditions and

$$
\begin{align*}
& R=H_{1} \oplus \cdots \oplus H_{s} \tag{1}\\
& R=K_{1} \oplus \cdots \oplus K_{t} \tag{2}
\end{align*}
$$

be two decompositions of R into indecomposable semirings. Then $s=t$ and for a suitable ordering of the K_{i}, we have $H_{i} \cong K_{i}$ and

$$
\begin{equation*}
R=K_{1} \oplus \cdots \oplus K_{p} \oplus H_{p+1} \oplus \cdots \oplus H_{s} . \tag{3}
\end{equation*}
$$

PROOF. Suppose we have $K_{1}, K_{2}, \cdots, K_{r-1}$ paired with $H_{1}, H_{2}, \cdots, H_{r-1}$ in such a way that $K_{i} \cong H_{i}$ for $1 \leq i \leq r-1$ and(3) holds for $p \leq r-1$. Consider

$$
\begin{equation*}
R=K_{1} \oplus \cdots \oplus K_{r-1} \oplus H_{r} \oplus \cdots \oplus H_{s} \tag{4}
\end{equation*}
$$

Let $\lambda_{1}, \cdots \lambda_{s}$ be the projections determined by (4) and $\eta_{1}, \eta_{2}, \cdots \eta_{t}$ be the pro:ections determined by (2). Now $\lambda_{r}=\left(\sum_{1}^{t} \eta_{j}\right) \lambda_{r}=\sum_{1}^{t} \eta_{i} \lambda_{r}$. For $x \in R, x \eta_{j} \in K_{j}$ and $j \leq r-1$ we have $x \eta_{j}=x \eta_{j} \lambda_{j}$ and $x \eta_{j} \lambda_{r}=x \eta_{j} \lambda_{j} \lambda_{r}=0$. Thus $\eta_{j} \lambda_{r}=0_{R}$ and $\lambda_{r}=\eta_{r} \lambda_{r}+$ $\eta_{r+1} \lambda_{r}+\cdots+n_{t} \lambda_{r}$. In $H_{r}, \lambda_{r}=1_{R}$ and hence $\sum_{r}^{t} \eta_{j} \lambda_{r}=1_{R}$. Also any partial sum $\sum \eta_{i k} \lambda_{r}=\left(\sum \eta_{i k}\right) \lambda_{r}$ induces a normal endomorphism in H_{r}. Since H_{r} is indecomposable it follows from corollary 6.8 that there exists a $u, r \leq u \leq t$ such that $r_{u} \lambda_{r}$ defines an automorphism of H_{r}. We can renumber the K_{i} such that K_{u} becomes K_{r}. Then $\eta_{r} \lambda_{r}$ is an automorphism of H_{r}. Let θ be its inverse. Then $H_{r} \xrightarrow{\theta} H_{r} \xrightarrow{\eta_{r}} K_{r} \xrightarrow{\lambda_{r}} H_{r}$ is the identity on H_{r}. Let $\alpha=\theta \eta_{r} \lambda_{r}=1_{H_{r}}$. Consider the normal composite $\beta: K_{r} \rightarrow K_{r}$ defined by $K_{r} \xrightarrow{\lambda_{r}} H_{r} \xrightarrow{\theta_{r}} H_{r} \xrightarrow{\eta_{r}} K_{r}$. Since $\alpha=1_{H_{r}}$, it follows that $\beta \beta=\beta$ and β is idempotent. Since K_{r} is indecomposable with both chain conditions, corollary 6.7 assures that β is nilpotent or β is an automorphism. Hence either $\beta=0_{K}$, or $\beta=1_{K}$, But $\beta \neq 0_{K}$, since β occurs in the composite $\alpha \alpha$ $=1_{H_{r}}$. Therefore $\beta=1_{K_{r}}$ and $\eta_{r}: H_{r} \rightarrow \mathrm{~K}_{r}$ is an isomorphism. Now λ_{r} sends each element of $K_{1}+\cdots+K_{r-1}+\mathrm{H}_{r+1}+\cdots+H_{s}$ onto 0 and since λ_{r} induces an isomorph ism of $K_{r}, K_{r} \cap\left(K_{1}+\cdots+K_{r-1}+H_{r+1}+\cdots+H_{s}\right)=0$.
Now let $\bar{R}=K_{1}+\cdots+K_{r}+H_{r+1}+\cdots+H_{s}$. Then

$$
\bar{R}=K_{1} \oplus \cdots \oplus K_{r} \oplus H_{r+1} \oplus \cdots \oplus H_{s} .
$$

To show that $\bar{R} \simeq R$. If $x=x_{1}+\cdots+x_{s}, x_{i} \in K_{i}$ for $i \leq r-1$ and $x_{j} \in H_{j}$ for $j \geq r$, then $\phi: x_{1}+\cdots+x_{s} \rightarrow x_{1}+\cdots+x_{r-1}+x \eta_{r}+x_{r+1}+\cdots+x_{s}$ is a normal endomorphism of R. Since η_{r} is an isomorphism, ψ is an isomorphism of R onto \bar{R}. It follows from theorem 6.4 that $R=\bar{R}$. Thus (3) holds also for $r=s$ and the proof is complete.

> University of Alabama in Birmingham
> Birmingham, Alabama, 35294

REFERENCES

[1] Allen, P.J. and Windham R., Operator Semigroups with Applications to Semirings, Publ. Math. (Debrecen) 20 (1973) 161-175.
[2] Allen, P. J., A Fundamental Theorem of Elomomorphism for Semirings, Proc. Amer. Math. Soc. (2) 21 (1969), 412-416.
[3] Jacobson, N., Lectures in Abstract Algebra, I, Van Nostrand, 1951.
[4] Rotman, J. J., The Theory of Groups, Allyn and Bacon, 1973.

