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DIRECT SUMS OF SEMIRINGS AND THE KRULL-SCHMIDT THEOREM

By Louis Dale

1. Introduction

P. Allen and W. Windham in [1] discussed briefly commutative semirings
with the property that any two ideals are related. This property of ideals
being related turns out to be a key to generalizing direct sums of semirings.
The purpose of this paper is to prove necessary and sufficient conditions for a
semiring to be a direct sum of ideals and to prove an analogue of the Krull-
Schmidt theorem for semirings.

2. Basic concepts

DEFINITION 2.1. A set R together with two binary operations (+) and (-)
is called @ semiring provided; (1) (R, +) is a commutative semigroup with a
zero, (2) (R, *) is a semigroup, and (3) (-) distributes over (4) from both the
left and the right. If (R, *) is a commutative semigroup, R is called a com-

mutative semiring. If there is an elemnt e&ER such that er=7e=7r for all rER
then R is called a semiring with an identity.

DEFINITION 2.2. A non-empty subset H of a semiring R is called ez ideal in
K 1f, (1) H is closed under (+), and (2). HRCH and RHCH.

DEFINITION 2.3. Let R, and R, be semirings. A mapping »: R —R, is called

a homomorphism if (a+b)n =an+by and (ab)n=_(an)(by) for all a, b&R. As usual,
n 1s called an isomorphism if » is both one-to-one and onto.

DEFINITION 2.4. A homomorphism 7: R,—R, is called semimaximal if » n=r,n
implies that 7, +kerp7,+kerp#g.

DEFINITION 2.5. A homomorphism n:R—R will be called complete if 7 is se-
mimaximal and there is an integer =1 such that Rzva—Irkerrf :

DEFINITION 2.6. Let R be a semiring and H  and H, ideals in R. H, is said
to be related to H, if hyt+hy=h'+h,, h, h/EH, impliesthat there are @, 6&
H,(H, such that k;+a=h,"+b.
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EXAMPLE 2.7. Let R be the set of non-negative integerslJ {oo}. Define ¢+b=
max{a, b} and eb=min{e, b}. Clearly R is a commutative semiring with an
identity and any two ideals in R are related, since an ideal in R has the form H =
{eER|a<r}, where r&R. Now let H be an ideal in R and define n* R—RK by
(a)=0 if e&€H and n(a)=a if e&R—H. It is clear that » is a homomorphism
and kerp=H. Now Rnp={R—H}U{0}. Consequently, R=Rnp+kernp and 7 is
complete.

3. Direet sums of semirings

Let R;, R, -, R be » commutative semirings with identities e¢;, e,, -, e,
respectively. Consider the set R= {(ay, ay -, a)la, € R}, In R, define (e,
@y -+ a,)=(b, boy **, bﬂ) if and only if ¢;,=b. for 1</<<w. Further, for a=
(ay, -+, a )and b=(d,, --, p,), define a-+b=(a;+b,, -+, a,+b )and ab=(a.b,, ‘-, ab.).

It is easily checked that R is a commutative semiring with identity e={(ey,

-, e ). The semiring R is called a direct sum of the semiring R,, -+, R and
is denoted by R=R,®OR,D--DR,.

‘THEOREM. 3.1. A semiring R is isomorphic to a direct sum R,OR,D---DR,
if and only if R contains ideals Si, each with an tdentity, such thal

(1) R=33S;, (@) S;N(>Z= S)=0and (3) S, is related to (X5 S,).
i#j 7 - iZj 7

PROOF. Let R=R,®-+®@R, and S,={e/=(0, -, 0, @, 0, -, OlecER}. It
is easily checked that S, is a subsemiring of R with identity e,/ =0, -, e, -,
0), and that S5, is an ideal in R. Now from x & R, it follows that x=(q;, a.,,
-+, a )=(a; 0, -, 0)+(0, a, 0, -, 0)+--+(, -, 0, e,)=a;+tay ++a’.
Consequently R=23_'S,. Next sppose that x&S,;N (3 Sj}. Then (0, «-, @, +0)

i) *
=(ay, = @;_» 0, a; 4, e, and it follows that ;=0 for each 7. Consequently

x=0 and S;N( EZ#J SJ.):O. Now suppose that ¢,” and b, &S, x and yE(E S:)
and ¢/+x=b'-+y. Hence (x;, -, x,_,, a, Ziil s 2 )=, v Y;_p» b
Viop s y,). Thus %;=Y; for each 7 and ¢,=5;. But S;N( Ef Sj)=0. So a;/+0
=0,"+0 and S, is related to ( % SJ-). Conversely, suppose that R is a semiring
containing ideals S; such that (1), (2), and (3) hold. Let $=S,®---@®S, and

define a mapping ¢: S—R by ¢(a;, -, @ )=a,+a,+++a,. To show that ¢ is
an isomorphism. First, ¢[(ay, -, @)+ - BPI=S1(@;+by s @, +b)]=
a,+b +-+a,+b,=(a,+ay+-+a,)+(b;+ - +b )=¢(a;, -, )+, -, b))

Z"

o ”
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Next observe that cziaj=0' if 77#7. To see this note that a2, 5. and a4,
< S,. But S,NS,=0 if i%%j. Consequently a,a;=0. Thus ¢[(a), -, @), -, b))
=¢laby, -, ap)=ab++abh. and o(a,, -, a )Py, -, b)=(a;+---+a).
(511""‘4‘3?”)=Glbl+a252—l----cznbn. Consequently ¢[(e, -, a,) (&y, -, )] =¢(a,. -
a,) by, -+, b)) and ¢ is a semiring homomorphism. Now let x & R. By (1), x
=a,+-+a, where ¢; €S,. Consequently, (¢, -, @) €S, ¢(a;, -, a)=xand

¢ is onto. Next suppose that ¢(e;, -, a,)=¢(;, -, b). Then a,+a,++a,

=by+--+b,. Since S; is related to (X S;) and Szﬂ(g_ S;)=0, it follows that
L5 1547

a;,=b, for each 7. Therefore (@, -, %):G’l’ -+, ) and ¢ 1s one to one.

Consequently, ¢ is an isomorphism and the proof is complete.

THEOREM. 3.2. If R is a sewmiring and R contains ideals R, such that cach

% & R has a unique representation x=x +-+x_ where x,E R, then R=R,®--&:
R ~

¥/

PROOF. From x=x,+--+x,, it follows that R=3-R. Now suppose x E R (}
(z%‘[ R].). Then x=x, and x=x,+---+x; [ +0- PR R kil o A But the representat-
lon for x is unique. Consequently, x,=0 for each 7. Thus x=0 and R;N 2_R.=0.

17 ]
If ¢ and b ER, xand y € (2 Rj), and ¢+x=b6-+y, then it follows from unique-
7]
ness of representation and R,N(25 R;)=0 that ¢=4. Thus R; is related to
177
(22 R;). Therefore R=R®---@R, by theorem 3. 1.
JF

It R, -+, R are semirings, then R=R;®--©R 1s called an external direct
sum. lf R i1s semiring Sy, -+, SH are ideals in R such that R=5,@---@®S,, then A

is called an internal direct sum.

4. Projections

Let R=R,®---@R_ be an internal direct sum of semirings and define ¢.: R—R,

by xe,=x, for x=x +--+x,. It is clear that ¢, is a semiring homomorphism. If

x; R, then xg,=x, If ijRj and 777, then xj.sz-:O. Also xe? =X, &,=x, and
ei-:e?. Consequently, €, is idempotent. Denote the endomorphism x—0 for all
x & R by 0, and the identity endomorphism by 1,. Then it is clear that &:E;
=0, if 7#j. Now suppose x=x,+---+x , y=y,+---+y, and xe,=ye. Then x,=y,
Now x"=x1+---+xi_1+xi+1—l—---+x¥ and y'=y;+-+y,_;+y, T, belong to
kere,. Also y+x” €y+kere; and x+y° &x-+Kkere,. But y-+x'=x+3" since x;=y,.
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Consequently x+kere;y+kere;#¢ and ¢; is semimaximal. Since kere,=R, -
+R, _+R, +--+R, and Re;=K,, it follows that R=Re;+kere; and ¢, is complete.
Thus ¢, is idempotent, semimaximal and complete. An endomorphism of a
semiring that i1s 1dempotent, semimaximal and complete will be called a projection.

It is straightforward to show that a projection on a semiring determines an
internal direct sum.

5. Decomposable semirings

DEFINITION 5.1. A semiring is decomposable if R=R,@®R, and each R;is a
proper ideal in R. If R is not decomposable, then R is called indecomposable.

THEOREM 5.2. A semiring R is decomposable if and only if there are proje-
ctions of R that are not O, and not 1pg.

PROOF. Suppose R=R,®R, is decomposable. Then R0 and R*R, and it
follows that the projections &,721, and €,70, Conversely, suppose € is a proje-
ction of R such that e#1, and &€7#0, Let Re=R; and kere=R, Since € is a
projection, R=Re+kere=R,+R,. It is clear that 2, and R, are ideals in R. Now

suppose that x&R,NK,. Then x=ye for some y&ER and xe=0. Hence x=ye= yez
=xe=0 and R,NR,=0. If x; and y,ER,, x,and y,ER,, and x;+x,=3,;+¥,, then
(x;+x,)e=(y, +y5)€. But x,e=0=y,6e and it follows that x,e=ye. Consequently,
x,=y, and R,NR,=0 gives that R, and R, are related. Therefore theorem 3.1
assures that R=R,@OR..

DEFINITION 5.3. A semiring R satisfies the descending chain condition if
R, DR,D---DR, D is a decreasing sequence of 1ideals in R, then there is an
integer N such that Ry=Ry =+

It is easy to show that any non-trivial semiring that satisfies the descending
chain condition can be expressed as a direct sum of a finite number of 1nde-
composable semirings.

6. The Krull-Schmidt theorem

A uniqueness theorem will now be given for direct sums of indecomposable
semirings.

DEFINITION 6.1. A semiring R is said to satisfy the ascending chain condition
if RCR,C---CR C--- is an ascending sequence of ideals in R, then there is an

integer N such that Ry=Ry =+
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DEFINITION 6.2. An endomorphism n of a semiring R is called normal if
the image of an ideal under » is an ideal.

LEMMA 6.3. If n: R—S is a semimaxal semiring homomorphism and kerp=
{0}, then 7% is one-to-one.

PROOF: Suppose ep=»bd7. Since 7 is semimaximal it follows that a-l—kery;ﬂb%—kerrz
#p. But kerp={0}. Consequently, e+kerp=b+kerp and @=b. Therefore 7 is
one-to-one.

THEOREM 6.4. Let R be a semiving that satisfies both chain conditions. If ,

s a normal semimaxial endomorphism of R such that p is one to one or on'o, then
n 1S ar automorphism.

PROOF. Assume that 7 is one to one. If Rnt—lerf for some #, any yERnr"z is

such that yr;zxr;t = (xrytﬁl)q for some x. Consequently, since 7 is one-to-one, y=x -l

=Ry

quently, 1f KOR»n and n is normal, then RDRWDRWZD--- is an 1infinite proper

and Rnt—zzi?rgt'"l. Continuing in this manner we obtain R=R7n. Conse-

decreasing sequence of ideals in R. A contradiction, since K satisfies the descend-
ing chain condition. Therefore if » is one-to-one, K=~RK» and » is an automorph-
ism. Now suppose that Bp=R and K izkeryf' for7=0,1,2,---. Letting 7;0=0 gives
K,={0}. It is easy to see that K, ;CK, and each K, is an ideal in R. Suppose

K ;=K for some 7 and z2&€K, ;. Write z=y5. Then O——-zrf_lz(yp)p"—lzynr.

y—
Hence ynr_1=0 and znr_zz( yn)nr_zz yn’_lzo. Consequently, z&K, _, and it fol-
lows that K, _,=K_ _;. Continuing in this manner one obtains {0} =K,=K,=K,
=.-- Hence either K;={0} or K,CK,CK;CK,C - is an ascending sequence of
ideals in R. Since R satisfies the ascending chain condition we must have K,= {0}.

Since 7 is semimaximal it follows that 7 is one to one and hence an automorphism.

DEFINITION 6.5. If 7 is an endomorphism of a semiring, the set of elements
z such that zrp =0 for some integer ¢ is called the radical of n. It is clear that
the radical of 7 is the union of all kery’, 7=0, 1, 2, -

THECREM 6.6 (Fittings lemma). Lel R be a semiring that satisfies both chain
conditions and n a normal complete endomorphism of R. Then R=HDK where K
s the radical of n and H=H7.

PROOF. Let K z.:kerrf and consider ascending chain K,CK;C-:- and the des-

cending chain RDRpDszD---. Since 7 is normal, each chain is a chain of ideals
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in R. By the chain conditions on R, there are integers » and s such that Ry =

Ry 1= ... and K,=K .-, Let H=Gn' and K=K_. Since 7 is complete, therz

s+17
is an integer ¢ such that R=RWt+ker77t. Let p=max{r, s, t}. It follows that
,R:Rn‘o +kerp’=H+K and K is the radical of 7. Now let. weHNX. Then w=
zr’ for suitable z & R and amp =0. But Ozwnp =zrz2p and it follows that z& K.
Consequently, O-——znp =w and HNK=0. Suppose x,, 2,&H, y,, y,&K and x,+y,=

Xo-+ys. Then (x;+ yl)'r(p = (%, +y2)77p. Thus xlrfﬂ-l- ylnp:xznp-.‘- yznp and xlpp =x2np

since y,, y,&K. But H :RnranHp =(R1;r)77p =H77p and it follows from theorem

6.4 that np is an automorphism. Thercfore np 1s one to one and x,=x,. Conseq-
uently, H is related to K since HNK=0. Therefore it follows from theorem

3.1 that KR =H®K.

COROLLARY 6.7. If R is an indecomposable semiring that salisfies both chain
conditions, then any normal complete endomorphism of R is either nilpoient or an

automorphism.

PROOF. From theorem 6.6, R=H®K where H=Hnand X is the radical of 7.
If R is indecomposable, either R=H or R=K. If R=H=Hn, then theorem 6.4
assures that » is an automorphism. If R=K, then % is nilpotent.

COROLLARY 6.8. Let R be an indecomposable semuring that satisfies both

chain conditions and 7, and 7, be normal complete endomorphisms. If n,+n,ts an
endomorphism, then n,—+n, 1S nilpotent.

The proof of corollary 6.8 is identical to the one for rings or groups and is
omitted here.

THEOREM 6.9. (Krull-Schmidt theorem) Let R be a semiring that satisfies both
chain conditions and

() R=H,®®H,
(2) R=K,®-O@K,

be two decompositions of R into indecomposable semirings. Then s=it and for a

suttable ordering of the K, we have H =K and
(3) R=K1®---®Kp®ﬂp+l®---®ﬂs.

PROOF. Suppose we have K, K,, -, K,_, paired with #,, H,, -, H,_; in such
a way that K,=H, for 1<i<r—1 and(3) holds for p<<r—1. Consider

(4) RzKl('D'"@Kr_l@Hf@'"@HS-
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Let 21, -« A, be the projections determined by (4) and M Mos ' 7, be the proe-

r ¢
ctions determined by (2). Now Z?,z()l:’ nj)}ir:Zl' n;/A,. For xER, xnjEK ; and

j<r-1 we have zp;=xn,A; and xpA,=xn.2;2 =0. Thus n,4, =0, and 2 =92 +

!

n, 14yt tnA. In H, 4, =1, and hence ,Z;_' nA,=lp. Also any partial sum

37 A, =(3n,, )4, induces a normal endomorphism in H,. Since H_ is indeco-
mposable 1t follows from corollary 6.8 that there exists a #, r<<u<t such that

'PHP.?, defines an automorphism of H,. We can renumber the K, such that K

becomes K . Then n A is an automorphism of H . Let 0 be its inverse. Then
¥, 7, A, _ . ] :
H—H —K —H, is the identity on H . Let a=0p4 =1,. Consider the nor-

2 6, . . :
mal composite /3: K —X, defined by Kf—'H?_—'H?,—E—*KT. Since a=1,, it fol-

lows that S5=g and § is idempotent. Since K, is indecomposable with both chain
conditions, corollary 6.7 assures that A is nilpotent or 8 is an automorphism.
Hence either B=0, or S=1. But B70y since 5 occurs in the composite ao
=1g . Therefore =1 g, and 7, H —K_is an isomorphism. Now A  sends each
element of K, +--+K_ _,+H_,,+--+H onto 0 and since A, induces an isomorph
ism of K,, K,N(K,+--+K, _,+H,  +--+H)=0.

Now let R=K -+-+K +H,  ,+--+H. Then

F=K1@---®K?®Hr+1@"'®ﬂs.
To show that R=R. If x=x,++x, %, € K, for i<r—1 and x, € H, for j=>7,

then ¢: x,+--+x—x+-+%x,_;+2an,+x ,,+---+x, is a normal endomorphism of

-1

R. Since 7, is an isomorphism, ¢ is an isomorphism of R onto R. It follows from
theorem 6.4 that R=R. Thus (3) holds also for r=s and the proof is complete.
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