Kyungpook Math. J. Volume 17, Number 2 December, 1977

DIRECT SUMS OF SEMIRINGS AND THE KRULL-SCHMIDT THEOREM

By Louis Dale

1. Introduction

P. Allen and W. Windham in [1] discussed briefly commutative semirings with the property that any two ideals are related. This property of ideals being related turns out to be a key to generalizing direct sums of semirings. The purpose of this paper is to prove necessary and sufficient conditions for a semiring to be a direct sum of ideals and to prove an analogue of the Krull-Schmidt theorem for semirings.

2. Basic concepts

DEFINITION 2.1. A set R together with two binary operations (+) and (\cdot) is called a semiring provided; (1) (R, +) is a commutative semigroup with a zero, (2) (R, \cdot) is a semigroup, and (3) (\cdot) distributes over (+) from both the left and the right. If (R, \cdot) is a commutative semigroup, R is called a commutative semiring. If there is an elemnt $e \in R$ such that er = re = r for all $r \in R$ then R is called a semiring with an identity.

DEFINITION 2.2. A non-empty subset H of a semiring R is called an ideal in R if, (1) H is closed under (+), and (2). $HR \subset H$ and $RH \subset H$.

DEFINITION 2.3. Let R_1 and R_2 be semirings. A mapping $\eta: R_1 \rightarrow R_2$ is called a homomorphism if $(a+b)\eta = a\eta + b\eta$ and $(ab)\eta = (a\eta)(b\eta)$ for all $a, b \in \mathbb{R}$. As usual, η is called an isomorphism if η is both one-to-one and onto.

DEFINITION 2.4. A homomorphism $\eta: R_1 \rightarrow R_2$ is called *semimaximal* if $r_1 \eta = r_2 \eta$ implies that $r_1 + \ker \eta \cap r_2 + \ker \eta \neq \phi$.

DEFINITION 2.5. A homomorphism $\eta: R \rightarrow R$ will be called *complete* if η is semimaximal and there is an integer $t \ge 1$ such that $R = R\eta' + \ker \eta'$.

DEFINITION 2.6. Let R be a semiring and H_1 and H_2 ideals in R. H_1 is said to be related to H_2 if $h_1 + h_2 = h_1' + h_2'$, h_i , $h_i' \in H_i$, implies that there are $a, b \in A$ $H_1 \cap H_2$ such that $h_1 + a = h_1' + b$.

Louis Dale

EXAMPLE 2.7. Let R be the set of non-negative integers $\bigcup \{\infty\}$. Define a+b= $\max\{a, b\}$ and $ab = \min\{a, b\}$. Clearly R is a commutative semiring with an identity and any two ideals in R are related, since an ideal in R has the form H = $\{a \in R \mid a < r\}$, where $r \in R$. Now let H be an ideal in R and define $\eta \colon R \rightarrow R$ by $\eta(a)=0$ if $a \in H$ and $\eta(a)=a$ if $a \in R-H$. It is clear that η is a homomorphism and ker $\eta = H$. Now $R\eta = \{R - H\} \cup \{0\}$. Consequently, $R = R\eta + ker\eta$ and η is complete.

136

3. Direct sums of semirings

Let R_1, R_2, \dots, R_n be *n* commutative semirings with identities e_1, e_2, \dots, e_n respectively. Consider the set $R = \{(a_1, a_2, \dots, a_n) | a_i \in R_i\}$. In R, define $(a_1, a_2, \dots, a_n) | a_i \in R_i\}$. $a_2, \dots, a_n = (b_1, b_2, \dots, b_n)$ if and only if $a_i = b_i$ for $1 \le i \le n$. Further, for $a = a_i$ (a_1, \dots, a_n) and $b = (b_1, \dots, b_n)$, define $a + b = (a_1 + b_1, \dots, a_n + b_n)$ and $ab = (a_1b_1, \dots, a_nb_n)$. It is easily checked that R is a commutative semiring with identity $e = (e_1, e_2)$..., e_n). The semiring R is called a direct sum of the semiring R_1 , ..., R_n and is denoted by $R = R_1 \oplus R_2 \oplus \cdots \oplus R_n$.

THEOREM. 3.1. A semiring R is isomorphic to a direct sum $R_1 \oplus R_2 \oplus \cdots \oplus R_n$ if and only if R contains ideals S_i , each with an identity, such that (1) $R = \sum S_i$, (2) $S_i \cap (\sum_{i \neq i} S_j) = 0$ and (3) S_i is related to $(\sum_{i \neq i} S_j)$. PROOF. Let $R = R_1 \oplus \cdots \oplus R_n$ and $S_i = \{a_i = (0, \dots, 0, a_i, 0, \dots, 0) | a_i \in R_i\}$. It is easily checked that S_i is a subsemiring of R with identity $e_i' = (0, \dots, e_i, \dots, e_i)$ 0), and that S_i is an ideal in R. Now from $x \in R$, it follows that $x = (a_1, a_2, a_3)$..., $a_n = (a_1, 0, ..., 0) + (0, a_2, 0, ..., 0) + ... + (0, ..., 0, a_n) = a_1' + a_2' + ... + a_n'$. Consequently $R = \sum S_i$. Next sppose that $x \in S_i \cap (\sum_{i \neq i} S_j)$. Then $(0, \dots, a_i, \dots 0) = x$ $=(a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots, a_n)$ and it follows that $a_i=0$ for each *i*. Consequently x=0 and $S_i \cap (\sum_{i \neq j} S_j) = 0$. Now suppose that a'_i and $b'_i \in S_i$, x and $y \in (\sum_{i \neq j} S_j)$ and $a_i' + x = b_i' + y$. Hence $(x_1, \dots, x_{i-1}, a_i, x_{i+1}, \dots, x_n) = (y_1, \dots, y_{i-1}, b_i)$ y_{i+1} , ..., y_n). Thus $x_j = y_j$ for each j and $a_i = b_i$. But $S_i \cap (\sum_{i \neq j} S_j) = 0$. So $a_i' + 0$ $=b_i'+0$ and S_i is related to $(\sum_{i \neq i} S_j)$. Conversely, suppose that R is a semiring containing ideals S_i such that (1), (2), and (3) hold. Let $S = S_1 \oplus \cdots \oplus S_n$ and define a mapping $\phi: S \rightarrow R$ by $\phi(a_1, \dots, a_n) = a_1 + a_2 + \dots + a_n$. To show that ϕ is an isomorphism. First, $\phi[(a_1, \dots, a_n) + (b_1, \dots, b_n)] = \phi[(a_1 + b_1, \dots, a_n + b_n)] = \phi[(a_1 + b_1, \dots, a_n + b_n)] = \phi[(a_1 + b_1, \dots, a_n + b_n)]$ $a_1 + b_1 + \dots + a_n + b_n = (a_1 + a_2 + \dots + a_n) + (b_1 + \dots + b_n) = \phi(a_1, \dots, a_n) + \phi(b_1, \dots, b_n).$

Direct Sums of Semirings and the Krull-Schmidt Theorem

137

Next observe that $a_i a_j = 0$ if $i \neq j$. To see this note that $a_i a_j \in S_j$ and $a_i a_j \in S_i$. But $S_i \cap S_j = 0$ if $i \neq j$. Consequently $a_i a_j = 0$. Thus $\phi[(a_1, \dots, a_n)(b_1, \dots, b_n)] = \phi[a_1 b_1, \dots, a_n b_n] = a_1 b_1 + \dots + a_n b_n$. and $\phi(a_1, \dots, a_n)\phi(b_1, \dots, b_n) = (a_1 + \dots + a_n)$. $(b_1 + \dots + b_n) = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$. Consequently $\phi[(a_1 \dots, a_n)(b_1, \dots, b_n)] = \phi(a_1, \dots, a_n) \cdot \phi(b_1, \dots, b_n)$ and ϕ is a semiring homomorphism. Now let $x \in R$. By (1), $x = a_1 + \dots + a_n$ where $a_i \in S_i$. Consequently, $(a_1, \dots, a_n) \in S$, $\phi(a_1, \dots, a_n) = x$ and ϕ is onto. Next suppose that $\phi(a_1, \dots, a_n) = \phi(b_1, \dots, b_n)$. Then $a_1 + a_2 + \dots + a_n = b_1 + \dots + b_n$. Since S_i is related to $(\sum_{i \neq j} S_j)$ and $S_i \cap (\sum_{i \neq j} S_i) = 0$, it follows that $a_i = b_i$ for each i. Therefore $(a_1, \dots, a_n) = (b_1, \dots, b_n)$ and ϕ is one to one. Consequently, ϕ is an isomorphism and the proof is complete.

THEOREM. 3.2. If R is a semiring and R contains ideals R_i such that cach $x \in R$ has a unique representation $x = x_1 + \dots + x_n$ where $x_i \in R_i$, then $R = R_1 \oplus \dots \oplus R_n$.

PROOF. From $x = x_1 + \dots + x_n$, it follows that $R = \sum R_i$. Now suppose $x \in R_i \cap (\sum_{i \neq j} R_j)$. Then $x = x_i$ and $x = x_1 + \dots + x_{i-1} + 0 + x_{i+1} + \dots + x_n$. But the representation for x is unique. Consequently, $x_i = 0$ for each i. Thus x = 0 and $R_i \cap \sum_{i \neq j} R_j = 0$. If a and $b \in R_i$, x and $y \in (\sum_{i \neq j} R_j)$, and a + x = b + y, then it follows from uniqueness of representation and $R_i \cap (\sum_{i \neq j} R_j) = 0$ that a = b. Thus R_i is related to $(\sum_{j \neq i} R_j)$. Therefore $R = R_1 \oplus \dots \oplus R_n$ by theorem 3.1.

If R_1, \dots, R_n are semirings, then $R = R_1 \oplus \dots \oplus R_n$ is called an external direct sum. If R is semiring S_1, \dots, S_n are ideals in R such that $R = S_1 \oplus \dots \oplus S_n$, then R is called an internal direct sum.

4. Projections

Let $R = R_1 \oplus \cdots \oplus R_n$ be an internal direct sum of semirings and define $\varepsilon_i: R \to R_i$ by $x\varepsilon_i = x_i$ for $x = x_1 + \cdots + x_n$. It is clear that ε_i is a semiring homomorphism. If $x_i \oplus R_i$, then $x_i \varepsilon_i = x_i$ If $x_j \oplus R_j$ and $i \neq j$, then $x_j \varepsilon_i = 0$. Also $x\varepsilon_i^2 = x_i \varepsilon_i = x_i$ and $\varepsilon_i = \varepsilon_i^2$. Consequently, ε_i is idempotent. Denote the endomorphism $x \to 0$ for all $x \oplus R$ by 0_R and the identity endomorphism by 1_R . Then it is clear that $\varepsilon_i \varepsilon_j$ $= 0_R$ if $i \neq j$. Now suppose $x = x_1 + \cdots + x_n$, $y = y_1 + \cdots + y_n$ and $x\varepsilon_i = y\varepsilon_i$. Then $x_i = y_i$. Now $x' = x_1 + \cdots + x_{i-1} + x_{i+1} + \cdots + x_n$ and $y' = y_1 + \cdots + y_{i-1} + y_{i+1} + \cdots + y_n$ belong to ker ε_i . Also $y + x' \oplus y + \ker \varepsilon_i$ and $x + y' \oplus x + \ker \varepsilon_i$. But y + x' = x + y' since $x_i = y_i$.

Louis Dale

Consequently $x + \ker \varepsilon_i \cap y + \ker \varepsilon_i \neq \phi$ and ε_i is semimaximal. Since $\ker \varepsilon_i = R_1 + \cdots + R_{i-1} + R_{i+1} + \cdots + R_n$ and $R\varepsilon_i = R_i$, it follows that $R = R\varepsilon_i + \ker \varepsilon_i$ and ε_i is complete. Thus ε_i is idempotent, semimaximal and complete. An endomorphism of a semiring that is idempotent, semimaximal and complete will be called a projection. It is straightforward to show that a projection on a semiring determines an internal direct sum.

5. Decomposable semirings

138

DEFINITION 5.1. A semiring is *decomposable* if $R = R_1 \oplus R_2$ and each R_i is a proper ideal in R. If R is not decomposable, then R is called *indecomposable*.

THEOREM 5.2. A semiring R is decomposable if and only if there are projections of R that are not 0_R and not 1_R .

PROOF. Suppose $R = R_1 \oplus R_2$ is decomposable. Then $R_i \neq 0$ and $R_i \neq R$, and it follows that the projections $\varepsilon_i \neq 1_R$ and $\varepsilon_i \neq 0_R$. Conversely, suppose ε is a projection of R such that $\varepsilon \neq 1_R$ and $\varepsilon \neq 0_R$. Let $R\varepsilon = R_1$ and $\ker \varepsilon = R_2$. Since ε is a projection, $R = R\varepsilon + \ker \varepsilon = R_1 + R_2$. It is clear that R_1 and R_2 are ideals in R. Now suppose that $x \in R_1 \cap R_2$. Then $x = y\varepsilon$ for some $y \in R$ and $x\varepsilon = 0$. Hence $x = y\varepsilon = y\varepsilon^2$ $= x\varepsilon = 0$ and $R_1 \cap R_2 = 0$. If x_1 and $y_1 \in R_1$, x_2 and $y_2 \in R_2$, and $x_1 + x_2 = y_1 + y_2$, then $(x_1 + x_2)\varepsilon = (y_1 + y_2)\varepsilon$. But $x_2\varepsilon = 0 = y_2\varepsilon$ and it follows that $x_1\varepsilon = y_1\varepsilon$. Consequently, $x_1 = y_1$ and $R_1 \cap R_2 = 0$ gives that R_1 and R_2 are related. Therefore theorem 3.1 assures that $R = R_1 \oplus R_2$.

DEFINITION 5.3. A semiring R satisfies the descending chain condition if $R_1 \supset R_2 \supset \cdots \supset R_n \supset \cdots$ is a decreasing sequence of ideals in R, then there is an integer N such that $R_N = R_{N+1} = \cdots$

It is easy to show that any non-trivial semiring that satisfies the descending chain condition can be expressed as a direct sum of a finite number of indecomposable semirings.

6. The Krull-Schmidt theorem

•

A uniqueness theorem will now be given for direct sums of indecomposable semirings.

DEFINITION 6.1. A semiring R is said to satisfy the ascending chain condition if $R_1 \subset R_2 \subset \cdots \subset R_n \subset \cdots$ is an ascending sequence of ideals in R, then there is an integer N such that $R_N = R_{N+1} = \cdots$

Direct Sums of Semirings and the Krull-Schmidt Theorem 139

DEFINITION 6.2. An endomorphism η of a semiring R is called *normal* if the image of an ideal under η is an ideal.

LEMMA 6.3. If $\eta: R \rightarrow S$ is a semimaxal semiring homomorphism and ker $\eta = \{0\}$, then η is one-to-one.

PROOF: Suppose $a\eta = b\eta$. Since η is semimaximal it follows that $a + \ker \eta \cap b + \ker \eta \neq \phi$. But $\ker \eta = \{0\}$. Consequently, $a + \ker \eta = b + \ker \eta$ and a = b. Therefore η is

one-to-one.

THEOREM 6.4. Let R be a semiring that satisfies both chain conditions. If η is a normal semimaxial endomorphism of R such that η is one to one or onlo, then η is an automorphism.

PROOF. Assume that η is one to one. If $R\eta^{t-1} = R\eta^t$ for some t, any $y \in R\eta^{t-2}$ is such that $y\eta = x\eta^t = (x\eta^{t-1})\eta$ for some x. Consequently, since η is one-to-one, $y = x\eta^{t-1}$ $\in R\eta^{t-1}$ and $R\eta^{t-2} = R\eta^{t-1}$. Continuing in this manner we obtain $R = R\eta$. Consequently, if $R \supset R\eta$ and η is normal, then $R \supset R\eta \supset R\eta^2 \supset \cdots$ is an infinite proper decreasing sequence of ideals in R. A contradiction, since R satisfies the descending chain condition. Therefore if η is one-to-one, $R = R\eta$ and η is an automorphism. Now suppose that $R\eta = R$ and $K_i = \ker \eta^i$ for $i = 0, 1, 2, \cdots$. Letting $\eta^0 = 0$ gives $K_0 = \{0\}$. It is easy to see that $K_{t-1} \subset K_t$ and each K_t is an ideal in R. Suppose $K_{r-1} = K_r$ for some r and $z \in K_{r-1}$. Write $z = y\eta$. Then $0 = z\eta^{r-1} = (y\eta)\eta^{r-1} = y\eta^r$. Hence $y\eta^{r-1} = 0$ and $z\eta^{r-2} = (y\eta)\eta^{r-2} = y\eta^{r-1} = 0$. Consequently, $z \in K_{r-2}$ and it follows that $K_{r-2} = K_{r-1}$. Continuing in this manner one obtains $\{0\} = K_0 = K_1 = K_2$ $= \cdots$ Hence either $K_0 = \{0\}$ or $K_0 \subset K_1 \subset K_1 \subset K_2 \subset \cdots$ is an ascending sequence of ideals in R. Since R satisfies the ascending chain condition we must have $K_0 = \{0\}$. Since η is semimaximal it follows that η is one to one and hence an automorphism.

DEFINITION 6.5. If η is an endomorphism of a semiring, the set of elements z such that $z\eta^{t}=0$ for some integer t is called the radical of η . It is clear that the radical of η is the union of all ker η^{i} , $i=0, 1, 2, \cdots$

THEOREM 6.6 (Fittings lemma). Let R be a semiring that satisfies both chain conditions and η a normal complete endomorphism of R. Then $R=H\oplus K$ where K is the radical of η and $H=H\eta$.

PROOF. Let $K_i = \ker \eta^i$ and consider ascending chain $K_0 \subset K_1 \subset \cdots$ and the descending chain $R \supset R \eta \supset R \eta^2 \supset \cdots$. Since η is normal, each chain is a chain of ideals

Louis Dale

140

in R. By the chain conditions on R, there are integers r and s such that $R\eta' =$ $R\eta^{r+1} = \cdots$ and $K_s = K_{s+1} = \cdots$. Let $H = G\eta^r$ and $K = K_s$. Since η is complete, there is an integer t such that $R = R\eta^t + \ker \eta^t$. Let $p = \max\{r, s, t\}$. It follows that $R = R\eta^p + \ker \eta^p = H + K$ and K is the radical of η . Now let $\omega \in H \cap K$. Then $\omega = R\eta^p + \ker \eta^p = H + K$ and K is the radical of η . $z\eta^p$ for suitable $z \in R$ and $\omega \eta^p = 0$. But $0 = \omega \eta^p = z\eta^{2p}$ and it follows that $z \in K$. Consequently, $0 = z\eta^p = \omega$ and $H \cap K = 0$. Suppose $x_1, x_2 \in H, y_1, y_2 \in K$ and $x_1 + y_1 = \omega$

 $x_2 + y_2$. Then $(x_1 + y_1)\eta^p = (x_2 + y_2)\eta^p$. Thus $x_1\eta^p + y_1\eta^p = x_2\eta^p + y_2\eta^p$ and $x_1\eta^p = x_2\eta^p$ since y_1 , $y_2 \in K$. But $H = R\eta' = R\eta'' + p = (R\eta')\eta'' = H\eta''$ and it follows from theorem 6.4 that η^p is an automorphism. Therefore η^p is one to one and $x_1 = x_2$. Consequently, H is related to K since $H \cap K = 0$. Therefore it follows from theorem 3.1 that $R = H \oplus K$.

COROLLARY 6.7. If R is an indecomposable semiring that satisfies both chain conditions, then any normal complete endomorphism of R is either nilpotent or an automorphism.

PROOF. From theorem 6.6, $R = H \oplus K$ where $H = H\eta$ and K is the radical of η . If R is indecomposable, either R=H or R=K. If $R=H=H\eta$, then theorem 6.4 assures that η is an automorphism. If R = K, then η is nilpotent.

COROLLARY 6.8. Let R be an indecomposable semiring that satisfies both chain conditions and η_1 and η_2 be normal complete endomorphisms. If $\eta_1 + \eta_2$ is an endomorphism, then $\eta_1 + \eta_2$ is nilpotent.

The proof of corollary 6.8 is identical to the one for rings or groups and is omitted here.

THEOREM 6.9. (Krull-Schmidt theorem) Let R be a semiring that satisfies both chain conditions and

(1)
(2)
$$R = H_1 \oplus \cdots \oplus H_s$$
$$R = K_1 \oplus \cdots \oplus K_t$$

be two decompositions of R into indecomposable semirings. Then s=t and for a suitable ordering of the K_i , we have $H_i \cong K_i$ and

(3)
$$R = K_1 \oplus \cdots \oplus K_p \oplus H_{p+1} \oplus \cdots \oplus H_s.$$

PROOF. Suppose we have K_1 , K_2 , \cdots , K_{r-1} paired with H_1 , H_2 , \cdots , H_{r-1} in such a way that $K_i \cong H_i$ for $1 \le i \le r-1$ and (3) holds for $p \le r-1$. Consider

(4)
$$R = K_1 \oplus \cdots \oplus K_{r-1} \oplus H_r \oplus \cdots \oplus H_s$$

Direct Sums of Semirings and the Krull-Schmidt Theorem 141 Let $\lambda_1, \dots, \lambda_s$ be the projections determined by (4) and $\eta_1, \eta_2, \dots, \eta_t$ be the projections determined by (2). Now $\lambda_r = (\sum_{1}^{t} \eta_j) \lambda_r = \sum_{1}^{t} \eta_i \lambda_r$. For $x \in R$, $x \eta_j \in K_j$ and $j \le r-1$ we have $x\eta_j = x\eta_j\lambda_j$ and $x\eta_j\lambda_r = x\eta_j\lambda_j\lambda_r = 0$. Thus $\eta_j\lambda_r = 0_R$ and $\lambda_r = \eta_r\lambda_r + \eta_r\lambda_r = 0$. $\eta_{r+1}\lambda_r + \dots + \eta_t\lambda_r$. In H_r , $\lambda_r = 1_R$ and hence $\sum_r \eta_j\lambda_r = 1_R$. Also any partial sum $\sum \eta_{ik} \lambda_r = (\sum \eta_{ik}) \lambda_r$ induces a normal endomorphism in H_r . Since H_r is indecomposable it follows from corollary 6.8 that there exists a u, $r \le u \le t$ such that $r_{y}\lambda_{r}$ defines an automorphism of H_{r} . We can renumber the K_{i} such that K_{u} becomes K_r . Then $\eta_r \lambda_r$ is an automorphism of H_r . Let θ be its inverse. Then $H_r \xrightarrow{\theta} H_r \xrightarrow{\eta_r} K_r \xrightarrow{\lambda_r} H_r$ is the identity on H_r . Let $\alpha = \theta \eta_r \lambda_r = 1_{H_r}$. Consider the normal composite $\beta: K_r \to K_r$ defined by $K_r \xrightarrow{\lambda_r} H_r \xrightarrow{\theta_r} H_r \xrightarrow{\eta_r} K_r$. Since $\alpha = 1_r$, it follows that $\beta\beta = \beta$ and β is idempotent. Since K_r is indecomposable with both chain conditions, corollary 6.7 assures that β is nilpotent or β is an automorphism. Hence either $\beta = 0_K$ or $\beta = 1_K$. But $\beta \neq 0_K$ since β occurs in the composite $\alpha \alpha$ =1_H. Therefore $\beta = 1_{K}$ and $\eta_r: H_r \to K_r$ is an isomorphism. Now λ_r sends each element of $K_1 + \dots + K_{r-1} + H_{r+1} + \dots + H_s$ onto 0 and since λ_r induces an isomorph ism of K_r , $K_r \cap (K_1 + \dots + K_{r-1} + H_{r+1} + \dots + H_s) = 0$. Now let $\overline{R} = K_1 + \dots + K_r + H_{r+1} + \dots + H_s$. Then $\overline{R} = K_1 \oplus \cdots \oplus K_r \oplus H_{r+1} \oplus \cdots \oplus H_s.$

To show that $\overline{R} \simeq R$. If $x = x_1 + \dots + x_s$, $x_i \in K_i$ for $i \leq r-1$ and $x_j \in H_j$ for $j \geq r$, then $\phi: x_1 + \dots + x_s \rightarrow x_1 + \dots + x_{r-1} + x\eta_r + x_{r+1} + \dots + x_s$ is a normal endomorphism of R. Since η_r is an isomorphism, ϕ is an isomorphism of R onto \overline{R} . It follows from theorem 6.4 that $R = \overline{R}$. Thus (3) holds also for r = s and the proof is complete.

> University of Alabama in Birmingham Birmingham, Alabama, 35294

REFERENCES

[1] Allen, P.J. and Windham R., Operator Semigroups with Applications to Semirings, Publ. Math. (Debrecen) 20 (1973) 161-175.

- [2] Allen, P.J., A Fundamental Theorem of Homomorphism for Semirings, Proc. Amer. Math. Soc. (2) 21 (1969), 412-416.
- [3] Jacobson, N., Lectures in Abstract Algebra, I, Van Nostrand, 1951.
- [4] Rotman, J.J., The Theory of Groups, Allyn and Bacon, 1973.