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CHARACTERIZATIONS OF ORDERED INTRA k-REGULAR

SEMIRINGS BY ORDERED k-IDEALS

Pakorn Palakawong na Ayutthaya and Bundit Pibaljommee

Abstract. We introduce the notion of ordered intra k-regular semirings,

characterize them using their ordered k-ideals and prove that an ordered
semiring S is both ordered k-regular and ordered intra k-regular if and

only if every ordered quasi k-ideal or every ordered k-bi-ideal of S is
ordered k-idempotent.

1. Introduction

The notion of intra-regular semigroups was introduced by Lajos [7] in 1963.
Then Shabir, Ali and Batool [14] introduced the notion of intra-regular semir-
ings and gave some of their characterizations by their quasi-ideals.

In 1951, Bourne [4] called a semiring (S,+, ·) to be regular if for every
element a of S there exist x, y ∈ S such that a + axa = aya. In 1996, Bourne
regularity was renamed to be k-regular by Adhikari, Sen and Weinert [1]. Also
in [1] k-regular semirings were characterized by their k-ideals. Later, Bhuniya
and Jana introduced the notions of k-bi-ideals, quasi k-ideals of semirings and
intra k-regular semirings and characterized k-regular semirings and intra k-
regular semirings using their k-bi-ideals and quasi k-ideals, see in [3] and [6],
respectively.

In 2011, the notion of an ordered semiring S := (S,+, ·,≤) was defined by
Gan and Jiang [5] as a semiring (S,+, ·) with a partially ordered set (S,≤) such
that ≤ is compatible with the operations + and · of S. In this paper, the notion
of left (right) ordered ideals and ordered ideals were defined. Then Mandal [8]
introduced and studied regular, intra-regular and k-regular ordered semirings.
In our previous works [9, 10], in 2016, we introduced the notion of ordered
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quasi-ideals of ordered semirings, studied some of their properties and char-
acterized regular ordered semirings, regular ordered duo-semirings and intra-
regular ordered semirings using their ordered quasi-ideals. Later, Patchakhieo
and Pibaljommee [12] introduced the notion of ordered k-ideals of ordered
semirings, defined the concept of ordered k-regular semirings as the general-
ization of k-regular ordered semirings in sense of Mandal [8] and characterized
them by their ordered k-ideals.

In our previous work [11], we introduced the notion of an ordered quasi
k-ideal of an ordered semiring, and characterized ordered k-regular semirings
using their ordered quasi k-ideals. As a continuation of our previous work, in
this paper, we introduce the notion of ordered intra k-regular semirings and
characterize them by their ordered k-ideals. In the last part of this paper,
ordered quasi k-ideals are used to characterize an ordered semiring which is
both ordered k-regular and ordered intra k-regular.

2. Preliminaries

A semiring is a tri-tuple (S,+, ·) consisting of a nonempty set S and two
binary operations + and · on S such that (S,+) and (S, ·) are semigroups and
the distributive law holds on S. A semiring S is called additively commutative
if x + y = y + x for all x, y ∈ S.

A nonempty subset A of a semiring S such that A + A ⊆ A is called a left
(right) ideal of S if SA ⊆ A (AS ⊆ A). We call A an ideal of S if A is both a
left and a right ideal of S. A subsemiring A of S is called a bi-ideal (interior
ideal) of S if ASA ⊆ A (SAS ⊆ A).

An ordered semiring is an algebraic structure (S,+, ·,≤) such that (S,+, ·)
is a semiring, (S,≤) is a partially ordered set and the relation ≤ is compatible
to the operations + and · on S. Mandal [8] called an ordered semiring S to be
regular if for every a ∈ S, a ≤ axa for some x ∈ S. In this paper, we always
assume that S is an additively commutative ordered semiring.

For any nonempty subsets A,B of S, and element a ∈ S, we denote

AB = {ab ∈ S | a ∈ A, b ∈ B},
A + B = {a + b ∈ S | a ∈ A, b ∈ B},

ΣA =

{
n∑

i=1

ai ∈ S | ai ∈ A,n ∈ N

}
,

ΣAB =

{
n∑

i=1

aibi ∈ S | ai ∈ A, bi ∈ B,n ∈ N

}
,

Σa = Σ{a} and

(A] = {x ∈ S | x ≤ a for some a ∈ A}.

Remark 2.1. Let A,B be nonempty subsets of an ordered semiring S. Then
the following statements hold:
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(i) A ⊆ ΣA and Σ(ΣA) = ΣA;
(ii) if A ⊆ B, then ΣA ⊆ ΣB;
(iii) A(ΣB) ⊆ (ΣA)(ΣB) ⊆ ΣAB and (ΣA)B ⊆ (ΣA)(ΣB) ⊆ ΣAB;
(iv) Σ(A + B) ⊆ ΣA + ΣB;
(v) Σ(A] ⊆ (ΣA];
(vi) A ⊆ (A] and ((A]] = (A];

(vii) if A ⊆ B, then (A] ⊆ (B];
(viii) A(B] ⊆ (A](B] ⊆ (AB] and (A]B ⊆ (A](B] ⊆ (AB];
(ix) A + (B] ⊆ (A] + (B] ⊆ (A + B];
(x) (A ∪B] = (A] ∪ (B];
(xi) (A ∩B] ⊆ (A] ∩ (B].

Clearly, A = ΣA if and only if A is closed under addition. It is easy to check
that the equality of Remark 2.1(xi) holds if (A] = A and (B] = B and also true
for arbitrary intersections.

Let A be a nonempty subset of S. Then the k-closure [12] of A in S is
defined by

A = {x ∈ S | x + a ≤ b for some a, b ∈ A}.

Remark 2.2. Let A,B be nonempty subsets of an ordered semiring S. Then
the following statements hold:

(i) ΣA ⊆ ΣA;

(ii) if A + A ⊂ A, then A ⊆ A and A = (A] = (A];
(iii) if A ⊆ B, then A ⊆ B;
(iv) AB ⊆ AB and AB ⊆ AB;
(v) A + B ⊆ A + B;
(vi) A ∪B ⊇ A ∪B;

(vii) A ∩B ⊆ A ∩B;

(viii) if A + A ⊂ A, then A ⊆ (A] ⊆
(
A
]

= A ⊆ (A].

We note that if a nonempty subset A of an ordered semiring S is closed
under addition, then (A], A and (A] are also closed.

As a consequence of Remark 2.1 and Remark 2.2, we obtain the following
remark.

Remark 2.3. Let A,B be nonempty subsets of an ordered semiring S such that
A and B are closed under addition. Then the following statements hold:

(i) Σ(A] = (ΣA];

(ii) ((A]] = (A];

(iii) ΣA(B] ⊆ (ΣA(B]] ⊆ (Σ(A] (B]] ⊆ (ΣAB] and

Σ(A]B ⊆ (Σ(A]B] ⊆ (Σ(A] (B]] ⊆ (ΣAB];

(iv) ((A] + (B]] ⊆ (A + B].

We recall the notions of some types of ordered k-ideals occurring in [9,11–13]
as follows. A nonempty subset A of an ordered semiring S is called a left ordered
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k-ideal (resp. right ordered k-ideal, ordered k-ideal, ordered k-bi-ideal, ordered
k-interior ideal) if A is a left ideal (resp. right ideal, ideal, bi-ideal, interior
ideal) of S and A = A. A nonempty subset Q of an ordered semiring S such

that Q+Q ⊆ Q is said to be an ordered quasi k-ideal of S if (ΣSQ]∩(ΣQS] ⊆ Q
and Q = Q.

Remark 2.4. Let S be an ordered semiring. Then the following statements
hold:

(i) every left (right) ordered k-ideal of S is an ordered quasi k-ideal of S;
(ii) every ordered quasi k-ideal of S is an ordered k-bi-ideal of S;
(iii) the intersection of a left ordered k-ideal and a right ordered k-ideal of S

is an ordered quasi k-ideal of S;
(iv) every ordered k-ideal of S is an ordered k-interior ideal of S.

The converses of Remark 2.4(i)-(iv) are not generally true as examples in
[11] for (i)-(iii) and as the following example for (iv).

Example 2.5. Let S = {a, b, c, d, e}. Define binary operations + and · on S
by the following tables:

+ a b c d e
a a b c d e
b b b d d d
c c d d d d
d d d d d d
e e d d d d

and

· a b c d e
a a a a a a
b a a a a a
c a a a a a
d a a a a a
e a c a a a

Define a binary relation ≤ on S by

≤ := {(a, a), (b, b), (c, c), (d, d), (e, e), (c, d)}.
We give the covering relation “ ≺ ” and the figure of S:

≺ := {(c, d)}.

a b e

c

d

Then (S,+, ·,≤) is an additively commutative ordered semiring. Let I = {a, b}.
Clearly, I is a subsemiring of S. We have SIS = {a} ⊆ I and I = I. Hence,
I is an ordered k-interior ideal of S, but not an ordered left k-ideal of S, since
SI = {a, c} * I.

If an ordered semiring S has an identity (i.e., ∃e ∈ S, ea = a = ae, ∀a ∈ S),
then the converse of Remark 2.4(iv) is true as follows.

Theorem 2.6. If an ordered semiring S has an identity, then their ordered
k-ideals and ordered k-interior ideals coincide.
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Proof. Let I be an ordered k-interior ideal and e be an identity of S. Then
IS = eIS ⊆ SIS ⊆ I and SI = SIe ⊆ SIS ⊆ I. Hence, I is an ordered k-ideal
of S. �

For any nonempty subset A of an ordered semiring S, we denote Lk(A),
Rk(A), Jk(A), Qk(A) and Bk(A) as the smallest left ordered k-ideal, right
ordered k-ideal, ordered k-ideal, ordered quasi k-ideal and ordered k-bi-ideal
of S containing A, respectively. Now we recall their constructions occurring in
[11,12] as the following lemma.

Lemma 2.7. Let A be a nonempty subset of an ordered semiring S. Then the
following statements hold:

(i) Lk(A) = (ΣA + ΣSA];

(ii) Rk(A) = (ΣA + ΣAS];

(iii) Jk(A) = (ΣA + ΣSA + ΣAS + ΣSAS];

(iv) Qk(A) = (ΣA + ((ΣSA] ∩ (ΣAS])];

(v) Bk(A) = (ΣA + ΣA2 + ΣASA].

3. Ordered k-regular semirings

Here, we recall the definition of ordered k-regular semirings and show that
their ordered k-interior ideals and their ordered k-ideals coincide.

Definition. Let S be an ordered semiring.

(i) An element a ∈ S is called k-regular [8] if a+axa ≤ aya for some x, y ∈ S.

(ii) An element a ∈ S is called ordered k-regular [12] if a ∈ (aSa].

An ordered semiring S is said to be k-regular (resp. ordered k-regular) if every
element a ∈ S is k-regular (resp. ordered k-regular).

We note that every k-regular ordered semiring is an ordered k-regular semir-
ing but the converse is not true (see Example 3.1 in [12]).

In ordered k-regular semirings, the converse of Remark 2.4(iv) is true as the
following theorem shows.

Theorem 3.1. Let S be an ordered semiring. If S is ordered k-regular, then
ordered k-ideals and ordered k-interior ideals coincide in S.

Proof. Let I be an ordered k-interior ideal of S. If x ∈ IS, then x ∈ (xSx] ⊆
(ISSIS] ⊆ (ISI] ⊆ (I] = I. Similarly, we can show that SI ⊆ I. Therefore, I
is an ordered k-ideal of S. �

Now, we recall some properties of ordered k-regular semirings that will be
used in the later sections.

Lemma 3.2 ([12]). Let S be an ordered semiring. Then S is ordered k-regular

if and only if R ∩ L = (RL] for every right ordered k-ideal R and left ordered
k-ideal L of S.
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Corollary 3.3 ([11]). Let S be an ordered semiring. Then S is ordered k-

regular if and only if A ⊆ (ΣRk(A)Lk(A)] for each A ⊆ S.

4. Ordered intra k-regular semirings

In [2], Ahsan, Mordeson and Shabir gave a general definition of intra-regular
semirings, namely a semiring S is said to be intra-regular if every element a of
S, a =

∑n
i=1 xia

2yi for some xi, yi ∈ S and for some n ∈ N. In this section, we
introduce the notion of ordered intra k-regular semirings as a generalization of
the intra-regular semiring in sense of Ahsan, Mordeson and Shabir, show that
their ordered k-ideals and ordered k-interior ideals coincide and characterize
them using their ordered k-ideals.

Definition. Let S be an ordered semiring.

(i) An element a ∈ S is called intra k-regular if a+
∑n

i=1 xia
2yi ≤

∑m
i=1 x

′
ia

2y′i
for some xi, yi, x

′
i, y

′
i ∈ S, n,m ∈ N.

(ii) An element a ∈ S is called ordered intra k-regular if a ∈ (ΣSa2S].

If every a ∈ S is intra k-regular (resp. ordered intra k-regular), then we call S
an intra k-regular ordered semiring (resp. ordered intra k-regular semiring).

Lemma 4.1. Let S be an ordered semiring. Then S is ordered intra k-regular
if and only if A ⊆ (ΣSA2S] for every A ⊆ S.

It is easy to check that if an ordered semiring S is intra k-regular, then
S is ordered intra k-regular, but the converse is not true that is the concept
of ordered intra k-regular semirings is a generalization of the concept of intra
k-regular semirings. The following example shows that there exists an ordered
intra k-regular semiring which is not intra k-regular.

Example 4.2. Let S = {a, b, c}. Define binary operations + and · on S by
the following tables:

+ a b c
a a a a
b a b c
c a c c

and

· a b c
a b b b
b b b b
c b b b

Define a binary relation ≤ on S by

≤ := {(a, a), (b, b), (c, c), (a, b), (a, c), (b, c)}.

We give the covering relation “ ≺ ” and the figure of S:

≺ := {(a, b), (b, c)}.
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a

b

c

Then (S,+, ·,≤) is an additively commutative ordered semiring. We have x ∈
(ΣSx2S] for all x ∈ S. This means S is ordered intra k-regular. However, S is
not intra k-regular, since the inequality c +

∑n
i=1 xic

2yi ≤
∑n

i=1 x
′
ic

2y′i has no
a solution.

The converse of Remark 2.4(iv) is true in ordered intra k-regular semirings
as the following theorem.

Theorem 4.3. Let S be an ordered semiring. If S is ordered intra k-regular,
then ordered k-ideals and ordered k-interior ideals coincide in S.

Proof. Let I be an ordered k-interior ideal of S. If x ∈ SI, then

x ∈ (ΣSx2S] ⊆ (ΣSSISIS] ⊆ (ΣSIIS] ⊆ (ΣSIS] ⊆ (ΣI] = I.

Similarly, we can show that IS ⊆ I. Therefore, I is an ordered k-ideal of S. �

Now, we give some characterizations of ordered intra k-regular semirings by
their ordered k-ideals.

Theorem 4.4. An ordered semiring S is ordered intra k-regular if and only if
L ∩ R ⊆ (ΣLR] for every left ordered k-ideal L and right ordered k-ideal R of
S.

Proof. Assume that S is ordered intra k-regular. Let L and R be a left and
a right ordered k-ideal of S, respectively. If x ∈ L ∩ R, then x ∈ (ΣSx2S] ⊆
(ΣSLRS] ⊆ (ΣLR].

Conversely, let A ⊆ S. By assumption and using Remark 2.3(iii) and Lemma
2.7, we obtain

A ⊆ Lk(A) ∩Rk(A) ⊆ (ΣLk(A)Rk(A)]

= (Σ(ΣA + ΣSA] (ΣA + ΣAS]]

⊆ (Σ(ΣA + ΣSA)(ΣA + ΣAS)]

⊆ (ΣA2 + ΣA2S + ΣSA2 + ΣSA2S].(1)

Using (1) and Remark 2.3(iii), we have

ΣA2 = ΣAA ⊆ ΣA(ΣA2 + ΣA2S + ΣSA2 + ΣSA2S]

⊆ (ΣA3 + ΣA3S + ΣASA2 + ΣASA2S]

⊆ (ΣSA2 + ΣSA2S].(2)



8 P. PALAKAWONG NA AYUTTHAYA AND B. PIBALJOMMEE

Using (1) and Remark 2.3(iii) again, we have

ΣA2 = ΣAA ⊆ Σ(ΣA2 + ΣA2S + ΣSA2 + ΣSA2S]A

⊆ (ΣA3 + ΣA2SA + ΣSA3 + ΣSA2SA]

⊆ (ΣA2S + ΣSA2S].(3)

Using (2) and Remark 2.3(iii), we have

ΣA2S ⊆ Σ(ΣSA2 + ΣSA2S]S ⊆ (Σ(ΣSA2S)] = (ΣSA2S].(4)

Using (3) and Remark 2.3(iii), we have

ΣSA2 ⊆ ΣS(ΣA2S + ΣSA2S] ⊆ (Σ(ΣSA2S)] = (ΣSA2S].(5)

Using (3), (5) and Remark 2.3(iv), we have

ΣA2 ⊆ (ΣA2S + ΣSA2S] ⊆ ((ΣSA2S] + ΣSA2S] ⊆ (ΣSA2S].(6)

By (1), (4), (5), (6) and using Remark 2.3(iv), we obtain

A ⊆ (ΣA2 + ΣA2S + ΣSA2 + ΣSA2S]

⊆ ((ΣSA2S] + (ΣSA2S] + (ΣSA2S] + ΣSA2S]

⊆ (ΣSA2S].

By Lemma 4.1, S is ordered intra k-regular. �

Corollary 4.5. An ordered semiring S is ordered intra k-regular if and only
if A ⊆ (ΣLk(A)Rk(A)] for each A ⊆ S.

Theorem 4.6. Let S be an ordered semiring. Then the following statements
are equivalent:

(i) S is ordered intra k-regular;

(ii) L∩B ⊆ (ΣLBS] for every left ordered k-ideal L and ordered k-bi-ideal B
of S;

(iii) L∩Q ⊆ (ΣLQS] for every left ordered k-ideal L and ordered quasi k-ideal
Q of S;

(iv) B ∩R ⊆ (ΣSBR] for every right ordered k-ideal R and ordered k-bi-ideal
B of S;

(v) Q ∩ R ⊆ (ΣSQR] for every right ordered k-ideal R and ordered quasi
k-ideal Q of S.

Proof. (i)⇒(ii): Let L and B be a left ordered k-ideal and an ordered k-bi-ideal

of S, respectively. If x ∈ L ∩B, then x ∈ (ΣSx2S] ⊆ (ΣSLBS] ⊆ (ΣLBS].
(ii)⇒(iii): It follows from Remark 2.4(ii).
(iii)⇒(i): Assume that (iii) holds. Let A ⊆ S. By assumption, we obtain

A ⊆ Lk(A)∩Qk(A)⊆ (ΣLk(A)Qk(A)S]⊆ (ΣLk(A)Rk(A)S] ⊆ (ΣLk(A)Rk(A)].

By Corollary 4.5, S is ordered intra k-regular.
(i)⇒(iv)⇒(v)⇒(i) can be prove in analogous way of (i)⇒(ii)⇒(iii)⇒(i). �
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Theorem 4.7. Let S be an ordered semiring. Then the following statements
are equivalent:

(i) S is ordered intra k-regular;

(ii) B∩Q ⊆ (ΣSBQS] for every ordered k-bi-ideal B and ordered quasi k-ideal
Q of S;

(iii) B∩Q ⊆ (ΣSQBS] for every ordered k-bi-ideal B and ordered quasi k-ideal
Q of S.

Proof. (i)⇔(ii): Assume that S is ordered intra k-regular. Let B and Q be an
ordered k-bi-ideal and an ordered quasi k-ideal of S, respectively. If x ∈ B∩Q,
then x ∈ (ΣSx2S] ⊆ (ΣSBQS].

Conversely, assume that (ii) holds. Let A ⊆ S. By assumption, we obtain

A ⊆ Bk(A) ∩Qk(A) ⊆ (ΣSBk(A)Qk(A)S]

⊆ (ΣSLk(A)Rk(A)S]

⊆ (ΣLk(A)Rk(A)].

By Corollary 4.5, S is ordered intra k-regular.
(i)⇔(iii) can be prove similar to (i)⇔(ii). �

5. Ordered k-regular and ordered intra k-regular semirings

In this section, we give some characterizations of an ordered semiring which
is both ordered k-regular and ordered intra k-regular and show that its ordered
k-bi-ideals and ordered quasi k-ideals are ordered k-idempotent.

First, we give an example of an ordered semiring which is both ordered
k-regular and ordered intra k-regular.

Example 5.1. Let S = {a, b, c, d}. Define binary operations + and · by the
following tables:

+ a b c d
a a b a d
b b b b b
c a b c d
d d b d d

and

· a b c d
a a d a d
b a b a d
c a d a d
d a d a d

Define a binary relation ≤ on S by

≤ := {(a, a), (b, b), (c, c), (d, d), (a, d), (b, d), (c, d)}.

We give the covering relation “ ≺ ” and the figure of S:

≺ := {(a, d), (b, d), (c, d)}.



10 P. PALAKAWONG NA AYUTTHAYA AND B. PIBALJOMMEE

a b c

d

Then (S,+, ·,≤) is an additively commutative ordered semiring. Clearly, a, b, d

are ordered k-regular and ordered intra k-regular. We consider c ∈ (cSc] =

{a} = {a, c} and c ∈ (ΣSc2S] = S. Therefore, S is ordered k-regular and
ordered intra k-regular.

Lemma 5.2. Let S be an ordered semiring. Then the following statements are
equivalent:

(i) S is ordered k-regular and ordered intra k-regular;

(ii) A ⊆ (ΣASA2SA] for each A ⊆ S;

(iii) a ∈ (aSa2Sa] for each a ∈ S.

Proof. (i)⇒(ii): Assume that (i) holds. Let A ⊆ S. Then A ⊆ (ASA] and

A ⊆ (ΣSA2S]. By Remark 2.3(iii), it follows that

A ⊆ (ΣASA] ⊆ (ΣAS(ΣASA]] ⊆ (ΣASASA] ⊆ (ΣAS(ΣSA2S]SA]

⊆ (ΣASSA2SSA] ⊆ (ΣASA2SA].

(ii)⇒(iii) and (iii)⇒(i) are obvious. �

Theorem 5.3. Let S be an ordered semiring. Then S is ordered k-regular and
ordered intra k-regular if and only if R ∩ L = ((RL)2] for every right ordered
k-ideal R and left ordered k-ideal L of S.

Proof. Assume that S is ordered k-regular and ordered intra k-regular. Let R
and L be a right and a left ordered k-ideal of S, respectively. Then

((RL)2] ⊆ ((RS)2] ⊆ (R2] ⊆ (R]=R and ((RL)2] ⊆ ((SL)2] ⊆ (L2] ⊆ (L]=L.

Thus ((RL)2] ⊆ R∩L. On the other hand, let x ∈ R∩L. By Lemma 5.2, we get

x ∈ (xSx2Sx] ⊆ (RSLRSL] ⊆ (RLRL] = ((RL)2]. Hence, ((RL)2] = R ∩ L.

Conversely, assume that ((RL)2] = R ∩ L for every right ordered k-ideal R

and left ordered k-ideal L of S. Then R ∩ L = (RLRL] ⊆ (RL] ⊆ R ∩ L,

i.e., R ∩ L = (RL] and R ∩ L = (RLRL] ⊆ (LR] ⊆ (ΣLR]. By Lemma
3.2 and Theorem 4.4, we obtain that S is ordered k-regular and ordered intra
k-regular. �

Theorem 5.4. Let S be an ordered semiring. Then the following statements
are equivalent:

(i) S is ordered k-regular and ordered intra k-regular;
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(ii) B ∩ L ∩ R ⊆ (BLRB] for every ordered k-bi-ideal B, left ordered k-ideal
L and right ordered k-ideal R of S;

(iii) Q∩L∩R ⊆ (QLRQ] for every ordered quasi k-ideal Q, left ordered k-ideal
L and right ordered k-ideal R of S.

Proof. (i)⇒(ii): Assume that (i) holds. Let B, L and R be ordered k-bi-
ideal, left ordered k-ideal and right ordered k-ideal of S, respectively. Let
x ∈ B∩L∩R. By Lemma 5.2, we get x ∈ (xSx2Sx] ⊆ (BSLRSB] ⊆ (BLRB].

(ii)⇒(iii): It follows from Remark 2.4(ii).
(iii)⇒(i): Assume that (iii) holds. Let R and L be a right and a left ordered

k-ideal of S, respectively. By Remark 2.4(iii), we have that R∩L is an ordered
quasi k-ideal of S. By assumption, we obtain

R ∩ L = (R ∩ L) ∩ L ∩R ⊆ ((R ∩ L)LR(R ∩ L)]

⊆ (RLRL] = ((RL)2] ⊆ R ∩ L.

Thus, R ∩ L = ((RL)2]. By Theorem 5.3, we have that S is ordered k-regular
and ordered intra k-regular. �

Let I be an ordered k-bi-ideal (ordered quasi k-ideal) of an ordered semiring

S. Then we call I ordered k-idempotent if I = (ΣI2].

Theorem 5.5. Let S be an ordered semiring. Then the following statements
are equivalent:

(i) S is ordered k-regular and ordered intra k-regular;
(ii) every ordered k-bi-ideal of S is ordered k-idempotent;
(iii) every ordered quasi k-ideal of S is ordered k-idempotent.

Proof. (i)⇒(ii): Assume that (i) holds. Clearly, (ΣB2] ⊆ (ΣB] = B. Let

x ∈ B. Using Lemma 5.2, we obtain x ∈ (xSx2Sx] ⊆ (BSBBSB] ⊆ (BB] =

(B2] ⊆ (ΣB2]. Now, B = (ΣB2].
(ii)⇒(iii): It follows from Remark 2.4(ii).
(iii)⇒(i): Assume that (iii) holds. Let A ⊆ S. By assumption, we obtain

A ⊆ Qk(A) = (ΣQk(A)Qk(A)] ⊆ (ΣRk(A)Lk(A)] and

A ⊆ Qk(A) = (ΣQk(A)Qk(A)] ⊆ (ΣLk(A)Rk(A)].

By Corollaries 3.3 and 4.5, we have that S is ordered k-regular and ordered
intra k-regular. �
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