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EXTREME PRESERVERS OF MAXIMAL COLUMN RANK
INEQUALITIES OF MATRIX MULTIPLICATIONS

OVER SEMIRINGS

Seok-Zun Song, Kwon-Ryong Park, and L. Hernandez Encinas

Abstract. We characterize linear operators that preserve sets of matrix
ordered pairs which satisfy extreme cases with respect to maximal column
rank inequalities of matrix multiplications over semirings.

1. Introduction

One of the most active and fertile subjects in matrix theory is the study of
those linear operators on matrices that leave certain properties or relations of
matrices invariant. For a field F , Mn(F ) be the vector space of all n×n matrices
over F . A lot of work has been done on the problems of determining the linear
operators on Mn(F ) that leave certain matrix subsets or matrix properties
invariant. For a survey of these types of problems, see [5]. Although the linear
preservers concerned are mostly linear operators on matrix spaces over fields or
rings, the same problem has been extended to matrices over various semirings.

Recently, Beasley and his colleagues investigated rank inequalities of ma-
trices over semirings ([1]) and characterized the linear operators that preserve
extreme set of matrix pairs for rank inequality cases ([2] and [3]). This research
extends the linear preserver problems to the set of matrix pairs from the set
of single matrices. These characterization problems are open even over fields
as well as over semirings ([5]). The structure of matrix varieties which arise as
extremal cases in the inequalities is not known over fields and over semirings. A
usual way to generate elements of such a variety is to find a matrix pairs which
belongs to it and to act on this set by various linear operators that preserve
this variety. Song and his colleagues characterized the linear operators that
preserve maximal column rank ([4] and [6]).
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In this paper, we characterize the linear operators that preserve the ex-
treme sets of matrix pairs which satisfy multiplicative properties with respect
to maximal column rank of matrices over semirings.

2. Preliminaries and definitions

Definition 2.1. A semiring S consists of a set and two binary operations,
addition and multiplication, such that:

• S is an Abelian monoid under addition (identity denoted by 0);
• S is a semigroup under multiplication (identity, if any, denoted by 1);
• multiplication is distributive over addition on both sides;
• s0 = 0s = 0 for all s ∈ S.

In this paper we will always assume that there is a multiplicative identity 1
in S which is different from 0.

In particular, a semiring S is called antinegative if the zero element is the
only element with an additive inverse.

Throughout this paper, we will assume that all semirings are antinegative
and have no zero divisors.

Definition 2.2. The binary Boolean algebra consists of the set B = {0, 1}
equipped with two binary operations, addition and multiplication. The opera-
tions are defined as usual except that 1 + 1 = 1.

Let Mm,n(S) denote the set of m×n matrices with entries from the semiring
S. If m = n, we use the notation Mn(S) instead of Mn,n(S). The matrix In

is the n× n identity matrix, Jm,n is the m× n matrix of all ones, Om,n is the
m × n zero matrix. We omit the subscripts when the order is obvious from
the context and we write I, J , and O, respectively. Let Ri denote the matrix
whose ith row is all ones and all other rows are zero, and Cj denote the matrix
whose jth column is all ones and all other columns are zero.

The matrix Ei,j , called a cell, denotes the matrix with 1 in (i, j) position
and zero elsewhere. A weighted cell is any nonzero scalar multiple of a cell,
that is, αEi,j is a weighted cell for any 0 6= α ∈ S.

For a matrix A, At denotes the transpose of A. A line of a matrix A is a
row or a column of A. We let Z(S) denote the center of the semiring S, and |A|
denote the number of nonzero entries in the matrix A, and A[i1, . . . , ik|j1, . . . , jl]
denote the k × l-submatrix of A which lies in the intersection of the i1, . . . , ik
rows and j1, . . . , jl columns.

Let ∆m,n = {(i, j) | i = 1, . . . , m; j = 1, . . . , n}. If m = n, we use the
notation ∆n instead of ∆n,n.

Definition 2.3. An element in Mn,1(S) is called a vector over S.
A set of vectors with entries from a semiring is called linearly independent

if there is no vector in this set that can be expressed as a nontrivial linear
combination of the others.
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The matrix A ∈Mm,n(S) is said to be of maximal column rank k (mc(A) =
k) if k is the maximal number of the columns of A which are linearly indepen-
dent.

The matrix A ∈ Mm,n(S) is said to be of maximal row rank k (mr(A) = k)
if k is the maximal number of the rows of A which are linearly independent.

The matrix A ∈ Mm,n(S) is said to be of factor rank k (rank(A) = k) if
there exist matrices B ∈Mm,k(S) and C ∈Mk,n(S) such that A = BC and k is
the smallest positive integer for which such factorization exists. By definition,
the only matrix with factor rank 0 is the zero matrix, O.

Remark 2.4. It follows that

(1.1) 1 ≤ rank(A) ≤ mc(A) ≤ n

for all nonzero matrix A ∈Mm,n(S).
If S is a subsemiring of a real field, then there is a real rank function ρ(A) for

any matrix A ∈Mm,n(S), which is considered as a matrix over real field. Easy
examples show that over semirings these functions are not equal in general.
However, the inequality mc(A) ≥ ρ(A) always holds.

The behavior of the real rank function ρ with respect to matrix multipli-
cation and addition is given by well-known Frobenius, Schwartz and Sylvester
inequalities. Arithmetic properties of maximal row and maximal column ranks
depend on the structure of semiring of entries.

Theorem 2.5 ([1]). Let S be an antinegative semiring without zero divisors
and let A ∈Mm,n(S), B ∈Mn,k(S) with A 6= O,B 6= O. Then

1. mc(AB) ≤ mc(B).
If mc(A) + mc(Bt) > n, then

2. mc(AB) ≥ 1.
For A ∈Mm,n(S) and B ∈Mn,k(S), one has that

3. mc(AB) ≥ 0.
4. mc(AB) ≥ ρ(A) + ρ(B)− n.

As was proved in [1], these inequalities are sharp and the best possible.

The following example shows that standard analogs for upper bound of the
factor rank of product of two matrices do not hold for maximal column rank,
that is, min {mc(A),mc(B)} is not greater than mc(AB).

Example 2.6. Let A = (3, 7, 7) ∈ M1,3(Z+), B =
[

1 1 1
0 1 1
0 0 1

]
∈ M3(Z+), where

Z+ is the semiring of nonnegative integers. Then mc(A) = 2, mc(B) = 3, and
mc(AB) = mc(3, 10, 17) = 3 over Z+.

Definition 2.7. For matrices X = [xi,j ] and Y = [yi,j ] in Mm,n(S), the matrix
X ◦ Y denotes the Hadamard or Schur product, i.e., the (i, j)th entry of X ◦ Y
is xi,jyi,j .

We say that the matrix A dominates the matrix B if and only if bi,j 6= 0
implies that ai,j 6= 0, and we write A ≥ B or B ≤ A in this case.
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Definition 2.8. Let S be a semiring, not necessarily commutative. An oper-
ator T : Mm,n(S) → Mm,n(S) is called linear if T (αX) = αT (X), T (Xβ) =
T (X)β, and T (X + Y ) = T (X) + T (Y ) for all X, Y ∈Mm,n(S), α, β ∈ S.

We say that an operator T preserves a set P if X ∈ P implies that T (X) ∈ P,
or, if P is a set of ordered pairs, that (X, Y ) ∈ P implies (T (X), T (Y )) ∈ P.

An operator T on Mm,n(S) is called a (P, Q, B)-operator if there exist per-
mutation matrices P ∈ Mm(S) and Q ∈ Mn(S), and a matrix B ∈ Mm,n(S)
with B ≥ J such that

(2.1) T (X) = P (X ◦B)Q

for all X ∈Mm,n(S) or, m = n and

(2.2) T (X) = P (X ◦B)tQ

for all X ∈ Mn(S). Operators of the form (2.1) are called non-transposing
(P, Q, B)-operators; operators of the form (2.2) are transposing (P,Q, B)-oper-
ators.

An operator T is called a (U, V )-operator if there exist invertible matrices
U ∈Mm(S) and V ∈Mn(S) such that

(2.3) T (X) = UXV

for all X ∈Mm,n(S) or, m = n and

(2.4) T (X) = UXtV

for all X ∈ Mn(S). Operators of the form (2.3) are called non-transposing
(U, V )-operators; operators of the form (2.4) are transposing (U, V )-operators.

Lemma 2.9. Let T be a (P,Q, B)-operator on Mm,n(S), where mc(B) = 1
and all elements of B are units in Z(S). If S is commutative, then T is a
(U, V )-operator.

Proof. Since T is a (P,Q, B)-operator, so there exist permutation matrices P ∈
Mm(S) and Q ∈ Mn(S) such that T (X) = P (X ◦B)Q, or m = n and T (X) =
P (X◦B)tQ for all X ∈Mm,n(S). Since mc(B) = 1, so it follows from (1.1) that
rank(B) = 1, equivalently, there exist vectors d = (d1, . . . , dm) ∈ Sm and e =
(e1, . . . , en) ∈ Sn such that B = dte. Since bi,j are units, di and ej are invertible
elements in S for all (i, j) ∈ ∆m,n. Let D = diag(d1, . . . , dm) ∈ Mm(S) and
E = diag(e1, . . . , en) ∈Mn(S) be diagonal matrices. Since S is commutative, it
is straightforward to check that X ◦ B = DXE for all X ∈ Mm,n(S). For the
case of T (X) = P (X◦B)Q, if we let U = PD and V = EQ, then T (X) = UXV
for all X ∈ Mm,n(S). If T is of the form T (X) = P (X ◦ B)tQ, then U = PE
and V = DQ shows that T (X) = UXtV for all X ∈ Mm,n(S). Thus the
Lemma follows. ¤

If A and B are matrices and A ≥ B we let A\B denote the matrix C = [ci,j ]
where

ci,j =
{

0 if bi,j 6= 0;
ai,j otherwise.
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We recall some results proven in [2] for later use.

Theorem 2.10 ([2, Theorem 2.14]). Let S be an antinegative semiring without
zero divisors and T : Mm,n(S) → Mm,n(S) be a linear operator. Then the
following are equivalent :

(1) T is bijective.
(2) T is surjective.
(3) There exists a permutation σ on ∆m,n and units bi,j ∈ Z(S) such that

T (Ei,j) = bi,jEσ(i,j) for all (i, j) ∈ ∆m,n.

Lemma 2.11 ([2, Lemma 2.16]). Let S be an antinegative semiring without
zero divisors, T :Mm,n(S) →Mm,n(S) be an operator which maps lines to lines
and is defined by T (Ei,j) = bi,jEσ(i,j), where σ is a permutation on ∆m,n, and
bi,j ∈ Z(S) are nonzero elements. Then T is a (P, Q, B)-operator.

One can easily check that if m = 1 or n = 1, then all operators under
consideration are (P, Q,B)-operators, if m = n = 1, then all operators under
consideration are (P, P t, B)-operators.

Henceforth we will always assume that m,n ≥ 2.
Now, we consider the following sets of matrices that arise as extremal cases

in the inequalities listed in Theorem 2.5.

M1L(S) = {(X, Y ) ∈Mn(S)2 | mc(XY ) = mc(Y )};
M2N (S) = {(X, Y ) ∈Mn(S)2 | mc(XY ) = 0};
M3B(S) = {(X, Y ) ∈Mn(S)2 | mc(X) + mc(Y t) > n and mc(XY ) = 1};
M4R(S) = {(X, Y ) ∈Mn(S)2 | mc(XY ) = ρ(X) + ρ(Y )− n}.
In the following sections, we characterize the linear operators that preserve

the sets M1L(S), M2N (S), M3B(S) and M4R(S).

3. Linear operators that preserve M1L(S)

In this section, we investigate the linear operators that preserve the extreme
set M1L(S). Recall that

M1L(S) = {(X, Y ) ∈Mn(S)2 | mc(XY ) = mc(Y )}.
Lemma 3.1. Let T be a surjective linear operator on Mn(S) that preserves
M1L(S). Then T preserves lines.

Proof. Suppose that T−1 does not map columns to lines, without loss of gen-
erality, that T−1(E1,1 + E2,1) ≥ E1,1 + E2,2. Then T (I) has nonzero entries in
at most n − 1 columns. Suppose T (I) has all zero entries in column j. Then
for X = I and Y = T−1(Ej,1), we have XY = Y however, T (X)T (Y ) = O.
This contradicts the fact that T preserves M1L(S).

Suppose that T−1 does not map rows to lines, without loss of generality, that
T−1(E1,1 + E1,2) ≥ E1,1 + E2,2. That is T (E1,1 + E2,2) = b1,1E1,1 + b2,2E1,2.
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Then for X = b−1
1,1E1,1 +b−1

2,2E2,2 +[O2⊕In−2], T (X) has maximal column rank
at most n−1 since either the first two columns of T (X) are linearly dependent
or at least one of the columns from the 3rd through the nth is zero.

Let Y = T−1(I), then we have that (X, Y ) ∈ M1L(S) since mc(XZ) =
mc(Z) for any Z, while mc(T (X)T (Y )) = mc(T (X)) ≤ n− 1 < n = mc(I) =
mc(T (Y )) so that (T (X), T (Y )) /∈M1L(S), a contradiction.

Thus T−1 and hence T map lines to lines. ¤

Theorem 3.2. Let T be a surjective linear operator on Mn(S) that preserves
M1L(S). Then T is a non-transposing (P, P t, B)-operator, where mc(B) = 1
and all elements of B are units in Z(S).

Proof. By applying Lemma 3.1 and Theorem 2.10 to Lemma 2.11, we have that
if T preserves M1L(S), then T is a (P, Q,B)-operator.

Suppose that mc(B) ≥ 2, without loss of generality mc(B[1, 2|1, 2]) = 2, and
Ei,1QP = Ei,r for all i. Consider the pair X = E1,1, Y = C1+C2. Then XY =
E1,1 + E1,2 and mc(XY ) = 1 = mc(Y ). Thus (X,Y ) ∈ M1L(S). However, the
maximal column rank of (X ◦ B)QP (Y ◦ B)) = b1,rbr,1E1,1 + b1,rbr,2E1,2 is
1 since b1,rbr,1 = br,1b

−1
r,2(b1,rbr,2) by assumption on bi,j (bi,j are units in

Z(S)), that is, the columns of (X ◦B)QP (Y ◦B) are linearly dependent. Thus
mc(T (X)T (Y )) = mc((X ◦ B)QP (Y ◦ B)) = 1, mc(T (Y )) = mc(Y ◦ B) ≥
mc(B[1, 2|1, 2]) = 2. Hence (T (X), T (Y )) /∈ M1L(S), a contradiction. Thus
mc(B) = 1.

To see that the operator T (X) = P (X ◦ B)tQ does not preserve M1L(S),
it suffices to consider T0(X) = XtD, where D = QP , since a similarity and
a Hadamard product with a matrix of maximal column rank 1 and invertible
entries preserve M1L(S). Let

X = (D−1)t







1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1


⊕ In−4


 and Y =




0 1 0 0
0 0 0 0
1 0 0 0
1 1 0 0


⊕ In−4.

Then (X, Y ) ∈ M1L(S) while (XtD, Y tD) /∈ M1L(S). That is, the transposing
operator does not preserve M1L(S).

It remains to prove that Q = P t. Assume that QP 6= I, and that X →
(QP )X transforms the rth row into the tth row for some r 6= t. We consider
the matrix X =

∑
i 6=t Ei,i, Y = Er,r. Then (X,Y ) ∈M1L(S), while for certain

invertible elements bi,i ∈ Z(S) we have that T (X)T (Y ) = P (X ◦ B)QP (Y ◦
B)Q = P (

∑
i 6=t bi,iEi,i)(br,rEt,t)Q = O. Thus (T (X), T (Y )) /∈ M1L(S), a

contradiction.
Hence Q = P t. ¤

Corollary 3.3. Let T be a surjective linear operator on Mn(S) with n ≥ 4. If S
is commutative and 1+1 6= 1, then T preserves M1L(S) if and only if there exist
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an invertible matrix U and an invertible element α such that T (X) = αUXU−1

for all X ∈Mn(S).

Proof. Suppose T preserves M1L(S). By Theorem 3.2, T is a non-transposing
(P, P t, B)-operator, where mc(B) = 1 and all elements of B are units in Z(S).
That is, T (X) = P (X ◦ B)P t for all X ∈ Mn(S). In the proof of Lemma 2.9,
there exist invertible diagonal matrices D and E in Mn(S) such that X ◦B =
DXE and hence T (X) = PDXEP t. Let us show that ED is an invertible
scalar matrix.

Define L(X) = (EP t)T (X)(EP t)−1 for all X ∈Mn(S). Then L(X) = EDX
for all X ∈ Mn(S). Since T preserves M1L(S) if and only if L does, it suffices
to consider L(X) = EDX. Let G = ED. Then G = diag(g1, . . . , gn) is an
invertible diagonal matrix. Assume that g1 6= g2. Consider matrices

(3.1) A =




0 4 1 1
4 0 1 1
1 1 0 1
1 1 1 0


 and B =




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 .

Let X = A⊕On−4 and Y = G−1(B⊕On−4). Since all columns of A are linearly
independent, it follows that mc(A) = mc(X) = mc(L(X)) = 4 and mc(B) =
mc(Y ) = mc(L(Y )) = 2. Furthermore,

XY =




4g−1
2 4g−1

2 g−1
3 + g−1

4 g−1
3 + g−1

4

4g−1
1 4g−1

1 g−1
3 + g−1

4 g−1
3 + g−1

4

g−1
1 + g−1

2 g−1
1 + g−1

2 g−1
4 g−1

4

g−1
1 + g−1

2 g−1
1 + g−1

2 g−1
3 g−1

3


⊕On−4

has maximal column rank at most 2. If mc(XY ) = 1, then we can easily show
that g1 = g2, a contradiction. Thus mc(XY ) = 2. That is (X, Y ) ∈ M1L(S).

But L(X)L(Y ) = G

([
4 4 2 2
4 4 2 2
2 2 1 1
2 2 1 1

]
⊕On−4

)
has maximal column rank 1 and hence

(L(X), L(Y )) 6∈ M1L(S). This contradiction shows that g1 = g2. Similarly, if

we consider a matrix A′ =
[

0 1 1 1
1 0 1 1
1 1 0 4
1 1 4 0

]
, then the parallel argument shows that

g3 = g4. Generally, if n ≥ 5, then we can split zero block into two parts
and take X ′ = Or ⊕A⊕On−r−4 or X ′ = Or ⊕A′ ⊕On−r−4 for appropriate r.
Therefore we have that G is an invertible scalar matrix. That is, G = ED = αI
for some invertible element α, equivalently E = αD−1. If we let U = PD, then
T (X) = P (DXE)P t = α(PD)X(PD)−1 = αUXU−1 for all X ∈Mn(S). Thus
the result follows.

The converse is obvious from the construction of the linear operator T . ¤
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4. Linear operators that preserve M2N (S)

In this section, we investigate the linear operators that preserve the extreme
set M2N (S). Recall that

M2N (S) = {(X, Y ) ∈Mn(S)2 | mc(XY ) = 0}.
Now, observe that mc(A) = 0 if and only if A = 0 if and only if rank(A) = 0.

Thus by [2, Corollary 7.2] we have a characterization of the linear operator that
preserve M2N (S) as follows:

Theorem 4.1. Let T be a surjective linear operator on Mn(S). Then T pre-
serves M2N (S) if and only if T is a non-transposing (P, P t, B)-operator, where
all elements of B are units in Z(S).

5. Linear operators that preserve M3B(S)

In this section, we investigate the linear operators that preserve the extreme
set M3B(S). Recall that

M3B(S) = {(X,Y ) ∈Mn(S)2 | mc(X) + mc(Y t) > n and mc(XY ) = 1}.
Lemma 5.1. Let T be a surjective linear operator on Mn(S). If T preserves
M3B(S), then T preserves lines.

Proof. Recall that if (X,Y ) ∈M3B(S), then mc(X)+mc(Y t) > n. We assume
that T does not preserve lines. Then there exist indices i, j, k, l, i 6= k, j 6= l
such that nonzero entries of T (Ei,j) and T (Ek,l) lie in a line.

Let T (Ei,j) = bi,jEs,t. Then either T (Ek,l) = bk,lEs,t′ or T (Ek,l) = bk,lEs′,t.
In both cases mc(T (Ei,j + Ek,l)) = 1. Let Y ′ ∈ Mn(S) be a matrix such
that Y ′ + Ej,i + El,k is a permutation matrix. We consider X = Ei,j + Ek,l,
Y = Y ′ + El,k. Then XY = Ek,k and (X, Y ) ∈ M3B(S). However, since
mc(T (X)) = 1 in either case, and mc(T (Y )t) ≤ n−1, mc(T (X))+mc(T (Y )t) ≤
n. Therefore, we have that (T (X), T (Y )) /∈M3B(S), a contradiction.

Hence T preserves lines. ¤
Theorem 5.2. Let n ≥ 3 and T be a surjective linear operator on Mn(S) that
preserves M3B(S). Then T is a non-transposing (P, P t, B)-operator, where
mc(B) = 1 and all elements of B are units in Z(S).

Proof. By applying Lemma 5.1 and Theorem 2.10 to Lemma 2.11, we have that
if T preserves M3B(S), then T is a (P, Q, B)-operator.

Suppose that mc(B) ≥ 2, without loss of generality mc(B[1, 2|1, 2]) = 2,
and Ei,1QP = Ei,r, Ei,2QP = Ei,s for all i. Consider the pair X = C1 + C2,
Y = I. Then (X,Y ) ∈M3B(S) while (T (X), T (Y )) /∈M3B(S), a contradiction.
Thus mc(B) = 1.

To see that the operator T (X) = P (X ◦ B)tQ does not preserve M3B(S),
it suffices to consider T0(X) = XtD, where D = QP , since a similarity and
a Hadamard product with a matrix of maximal column rank 1 and invertible
entries preserve M3B(S).
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Let X = (D−1)t
[

O I2
O O

]
and Y =

[
In−1 O

O O

]
. Then (X,Y ) ∈ M3B(S) while

(XtD, Y tD) /∈ M3B(S). This proves that T is a non-transposing (P,Q, B)-
operator.

Let us check that Q = P t. Assume that QP 6= I, and that X → (QP )X
transforms the pth row into the sth row and rth row into tth row with r 6= s, t.
These exist since n ≥ 3. We consider the matrix X =

∑
i 6=r Ei,i, Y = Ep,p +

Er,r. Then (X, Y ) ∈ M3B(S). And we have that mc(T (X)) + mc(T (Y )) =
n+1 > n and T (X)T (Y ) = P (X◦B)QP (Y ◦B)Q = P (

∑
i 6=r bi,iEi,i)(bp,pEs,p+

br,rEt,s)Q. Thus mc((T (X)T (Y )) = 2, that is, (T (X), T (Y )) /∈ M3B(S), a
contradiction.

Hence Q = P t. ¤

Corollary 5.3. Let S = B, Z+ or a chain semiring, and T be a surjective
linear operator on Mn(S) with n ≥ 3. Then T preserves M3B(S) if and only
if there is a permutation matrix P ∈ Mn(S) such that T (X) = PXP t for all
X ∈Mn(S).

Proof. Suppose T preserves M3B(S). By Theorem 5.2, T is a non-transposing
(P, P t, B)-operator, where all elements of B are invertible. Note that if S =
B, Z+ or a chain semiring, “1” is the only invertible element in S, and hence
B = J . Thus, there exists a permutation matrix P ∈Mn(S) such that T (X) =
PXP t for all X ∈Mn(S).

The converse is easily established. ¤

6. Linear operators that preserve M4R(S)

In this section, we investigate the linear operators that preserve the extreme
set M4R(S). Recall that

M4R(S) = {(X, Y ) ∈Mn(S)2 | mc(XY ) = ρ(X) + ρ(Y )− n}.
Lemma 6.1. Let S be any subsemiring of R+, σ be a permutation of ∆n, and
T be defined by T (Ei,j) = bi,jEσ(i,j) for all (i, j) ∈ ∆n, where all bi,j are units.
If T preserves M4R(S), then T preserves lines.

Proof. If T does not preserve lines, then there exist indices i, j, k, l, i 6= k, j 6= l
such that nonzero entries of T (Ei,j) and T (Ek,l) lie in a line. Let X ′ ∈Mn(S)
be a matrix such that X ′ + Ei,j + Ek,l is a permutation matrix.

We consider X = X ′ + Ei,j + Ek,l. Then (X,O) ∈ M4R(S). However,
mc(T (X)) ≤ n − 1, ρ(T (X)) ≤ n − 1 since either T (X) has a zero column or
T (X) has two proportional columns since bi,j is invertible. Thus (T (X), O) /∈
M4R(S), a contradiction.

Hence T preserves lines. ¤

Theorem 6.2. Let S be a subsemiring of R+, and T be a surjective linear oper-
ator on Mn(S). If T preserves M4R(S), then T is a non-transposing (P, P t, B)-
operator, where mc(B) = 1 and all elements of B are units.
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Proof. By applying Lemma 6.1 and Theorem 2.10 to Lemma 2.11, we have that
if T preserves M4R(S), then T is a (P, Q,B)-operator.

Let us check that Q = P t. Assume that QP 6= I, and that X → (QP )X
transforms the rth row into the tth row with r 6= t. We consider the matrix
X =

∑
i 6=r Ei,i, Y = Er,r. Then (X,Y ) ∈ M4R(S), and for certain nonzero

bi,i ∈ S, T (X)T (Y ) = P (X◦B)QP (Y ◦B)Q = P (
∑

i 6=r bi,iEi,i)(br,rEt,r)Q 6= O,
that is, (T (X), T (Y )) /∈M4R(S), a contradiction. Thus Q = P t.

Suppose that mc(B) ≥ 2, without loss of generality mc(B[1, 2|1, 2]) = 2.
Let

Y =




b−1
1,1 b−1

1,2 0
b−1
2,1 b−1

2,2 0
O In−2


 .

Then mc(Y ) = mc(Y 2) = n. Note that from the invertibility of bi,j it follows
that ρ(Y ) = n. Indeed, if b−1

i,1 = λb−1
i,2 (i = 1, 2) for some λ ∈ R+, then λ =

b−1
i,1 bi,2 ∈ S which contradicts mc(B[1, 2|1, 2]) = 2. Thus mc(Y 2) = 2ρ(Y ) − n

or (Y, Y ) ∈ M4R(S). But mc(Y ◦ B) = mc((Y ◦ B)2) = ρ(Y ◦ B) = n − 1,
and hence mc((Y ◦ B)2) > 2ρ(Y ◦ B) − n, so that (T (X), O) /∈ M4R(S), a
contradiction. Hence mc(B) = 1.

Let X = (D−1)t ([ 0 1
1 1 ]⊕ In−2), Y = [ 1 0

0 0 ] ⊕ In−2, where D = QP . Then
(X, Y ) ∈ M4R(S) while (XtD, Y tD) /∈ M4R(S). This proves that T is a non-
transposing (P,Q, B)-operator.

Therefore T is a non-transposing (P, P t, B)-operator, where mc(B) = 1. ¤

Corollary 6.3. Let S be a subsemiring of R+, and T be a surjective linear
operator on Mn(S), where n ≥ 4. Then T preserves M4R(S) if and only if
there is an invertible matrix U and an invertible elements α such that T (X) =
αUXU−1 for all X ∈Mn(S).

Proof. Suppose T preserves M4R(S). By Theorem 6.2, T is a non-transposing
(P, P t, B)-operator, where mc(B) = 1 and all elements of B are units; T (X) =
P (X◦B)P t for all X ∈Mn(S). In the proof of Lemma 2.9, there exist invertible
diagonal matrices D and E in Mn(S) such that X ◦ B = DXE and hence
that T (X) = PDXEP t. Let us show that ED is an invertible scalar matrix.
Similar to the proof of Corollary 3.3, we suffice to consider L(X) = EDX for
all X ∈ Mn(S). Let G = ED. Then G = diag(g1, . . . , gn) is an invertible
diagonal matrix. Suppose G is not a scalar matrix. As in Corollary 3.3, we
lose no generality in assuming that g1 6= g2. Let A and B be matrices in (3.1).
Let X = A⊕ In−4 and Y = B ⊕ In−4. Then

XY =




4 4 2 2
4 4 2 2
2 2 1 1
2 2 1 1


⊕On−4
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so that ρ(X) = n−1 = ρ(L(X)), ρ(Y ) = n−2 = ρ(T (Y )), and mc(XY ) = n−3.
Thus (X,Y ) ∈M4R(S). But

L(X)L(Y ) = G







4g2 4g2 g3 + g4 g3 + g4

4g1 4g1 g3 + g4 g3 + g4

g1 + g2 g1 + g2 g4 g4

g1 + g2 g1 + g2 g3 g3


⊕ In−4




so that mc(L(X)L(X)) = n−2 because g1 6= g2. Thus (L(X), L(Y )) /∈M4R(S),
a contradiction. Hence G = ED = αI for some invertible element α. If
U = PD, then T (X) = αUXU−1.

The converse is immediate. ¤
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