• 제목/요약/키워드: Semiprime rings

검색결과 75건 처리시간 0.026초

JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, II

  • Kim, Byung-Do
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권3호
    • /
    • pp.259-296
    • /
    • 2008
  • Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation D : A $\rightarrow$ A such that $D(x)^2$[D(x),x] $\in$ rad(A) or [D(x),x]$D(x)^2$ $\in$ rad(A) for all x $\in$ A. In this case, we have D(A) $\subseteq$ rad(A).

  • PDF

JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, I

  • Kim, Byung-Do
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권2호
    • /
    • pp.179-201
    • /
    • 2008
  • Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D\;:\;A{\rightarrow}A$ such that $D(x)[D(x),x]^2\;{\in}\;rad(A)$ or $[D(x), x]^2 D(x)\;{\in}\;rad(A)$ for all $x\;{\in}\ A$. In this case, we have $D(A)\;{\subseteq}\;rad(A)$.

  • PDF

REMARKS ON GENERALIZED (α, β)-DERIVATIONS IN SEMIPRIME RINGS

  • Hongan, Motoshi;ur Rehman, Nadeem
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.535-542
    • /
    • 2017
  • Let R be an associative ring and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an (${\alpha},{\beta}$)-derivation of R if $d(xy)=d(x){\alpha}(y)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $D:R{\rightarrow}R$ is called a generalized (${\alpha},{\beta}$)-derivation of R associated with an (${\alpha},{\beta}$)-derivation d if $D(xy)=D(x){\alpha}(y)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [5], and a theorem of Daif and El-Sayiad [2].

DERIVATIONS WITH NILPOTENT VALUES ON Γ-RINGS

  • Dey, Kalyan Kumar;Paul, Akhil Chandra;Davvaz, Bijan
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제21권4호
    • /
    • pp.237-246
    • /
    • 2014
  • Let M be a prime ${\Gamma}$-ring and let d be a derivation of M. If there exists a fixed integer n such that $(d(x){\alpha})^nd(x)=0$ for all $x{\in}M$ and ${\alpha}{\in}{\Gamma}$, then we prove that d(x) = 0 for all $x{\in}M$. This result can be extended to semiprime ${\Gamma}$-rings.

ON LEFT α-MULTIPLIERS AND COMMUTATIVITY OF SEMIPRIME RINGS

  • Ali, Shakir;Huang, Shuliang
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.69-76
    • /
    • 2012
  • Let R be a ring, and ${\alpha}$ be an endomorphism of R. An additive mapping H : R ${\rightarrow}$ R is called a left ${\alpha}$-multiplier (centralizer) if H(xy) = H(x)${\alpha}$(y) holds for all x,y $\in$ R. In this paper, we shall investigate the commutativity of prime and semiprime rings admitting left ${\alpha}$-multiplier satisfying any one of the properties: (i) H([x,y])-[x,y] = 0, (ii) H([x,y])+[x,y] = 0, (iii) $H(x{\circ}y)-x{\circ}y=0$, (iv) $H(x{\circ}y)+x{\circ}y=0$, (v) H(xy) = xy, (vi) H(xy) = yx, (vii) $H(x^2)=x^2$, (viii) $H(x^2)=-x^2$ for all x, y in some appropriate subset of R.

Derivations with Power Values on Lie Ideals in Rings and Banach Algebras

  • Rehman, Nadeem ur;Muthana, Najat Mohammed;Raza, Mohd Arif
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.397-408
    • /
    • 2016
  • Let R be a 2-torsion free prime ring with center Z, U be the Utumi quotient ring, Q be the Martindale quotient ring of R, d be a derivation of R and L be a Lie ideal of R. If $d(uv)^n=d(u)^md(v)^l$ or $d(uv)^n=d(v)^ld(u)^m$ for all $u,v{\in}L$, where m, n, l are xed positive integers, then $L{\subseteq}Z$. We also examine the case when R is a semiprime ring. Finally, as an application we apply our result to the continuous derivations on non-commutative Banach algebras. This result simultaneously generalizes a number of results in the literature.

REMARKS ON GENERALIZED JORDAN (α, β)*-DERIVATIONS OF SEMIPRIME RINGS WITH INVOLUTION

  • Hongan, Motoshi;Rehman, Nadeem ur
    • 대한수학회논문집
    • /
    • 제33권1호
    • /
    • pp.73-83
    • /
    • 2018
  • Let R be an associative ring with involution * and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an $({\alpha},{\beta})^*$-derivation of R if $d(xy)=d(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $F:R{\rightarrow}R$ is called a generalized $({\alpha},{\beta})^*$-derivation of R associated with an $({\alpha},{\beta})^*$-derivation d if $F(xy)=F(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [12], and a theorem of Daif and El-Sayiad [6], moreover, we generalize a theorem of Ali et al. [4] and a theorem of Huang and Koc [9] related to generalized Jordan triple $({\alpha},{\beta})^*$-derivations.

REVERSIBILITY AND SYMMETRY OVER CENTERS

  • Choi, Kwang-Jin;Kwak, Tai Keun;Lee, Yang
    • 대한수학회지
    • /
    • 제56권3호
    • /
    • pp.723-738
    • /
    • 2019
  • A property of reduced rings is proved in relation with centers, and our argument in this article is spread out based on this. It is also proved that the Wedderburn radical coincides with the set of all nilpotents in symmetric-over-center rings, implying that the Jacobson radical, all nilradicals, and the set of all nilpotents are equal in polynomial rings over symmetric-over-center rings. It is shown that reduced rings are reversible-over-center, and that given reversible-over-center rings, various sorts of reversible-over-center rings can be constructed. The structure of radicals in reversible-over-center and symmetric-over-center rings is also investigated.