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REVERSIBILITY AND SYMMETRY OVER CENTERS

Kwang-Jin Choi, Tai Keun Kwak, and Yang Lee

Abstract. A property of reduced rings is proved in relation with centers,

and our argument in this article is spread out based on this. It is also

proved that the Wedderburn radical coincides with the set of all nilpo-
tents in symmetric-over-center rings, implying that the Jacobson radi-

cal, all nilradicals, and the set of all nilpotents are equal in polynomial
rings over symmetric-over-center rings. It is shown that reduced rings are

reversible-over-center, and that given reversible-over-center rings, various

sorts of reversible-over-center rings can be constructed. The structure of
radicals in reversible-over-center and symmetric-over-center rings is also

investigated.

Throughout this note every ring is an associative ring with identity unless
otherwise stated. A nilpotent element in a ring is said to be a nilpotent for
short. Let R be a ring. We denote the center of R by Z(R), and use N(R),
J(R), N∗(R), N∗(R), and W (R) to denote the set of all nilpotents, Jacobson
radical, lower nilradical (i.e., prime radical), upper nilradical (i.e., the sum of
all nil ideals), and the Wedderburn radical (i.e., the sum of all nilpotent ideals)
of R, respectively. It is well-known that W (R) ⊆ N∗(R) ⊆ N∗(R) ⊆ N(R) and
N∗(R) ⊆ J(R).

The polynomial (resp., power series) ring with an indeterminate x over R is
denoted by R[x] (resp., R[[x]]). Z (Zn) denotes the ring of integers (modulo n)
and use Q (resp., R) for the field of rational (resp., real) numbers. Denote the
n by n (n ≥ 2) full (resp., upper triangular) matrix ring over R by Matn(R)
(resp., Tn(R)). Write Dn(R) = {(aij) ∈ Tn(R) | a11 = · · · = ann}. Use Eij for
the matrix with (i, j)-entry 1 and zeros elsewhere.

A ring is usually called reduced if it has no nonzero nilpotents. Lambek [10]
introduced the concept of a symmetric right ideal of a ring, unifying the sheaf
representation of commutative rings and reduced rings. Lambek called a right
ideal I of a ring R symmetric if abc ∈ I implies acb ∈ I for all a, b, c ∈ R. If the
zero ideal is symmetric, then R is usually called symmetric; while Anderson-
Camillo [2] used the term ZC3 for this concept. It is proved by Lambek that a
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ring R is symmetric if and only if r1r2 · · · rn = 0 implies rσ(1)rσ(2) · · · rσ(n) = 0
for any permutation σ of the set {1, 2, . . . , n}, where n ≥ 1 and ri ∈ R for all
i (see [10, Proposition 1]). Anderson-Camillo also obtained this result inde-
pendently in [2, Theorem I.1]. Commutative rings clearly symmetric. Reduced
rings are symmetric by [2, Theorem I.3].

Following Cohn [3], a ring R is called reversible if ab = 0 implies ba = 0 for
a, b ∈ R. Anderson-Camillo [2] used the term ZC2 for the reversible property.
It is well-known that W (R) = N∗(R) = N∗(R) = N(R) for a reversible ring R.
Symmetric rings are clearly reversible, but not conversely as in [11]. A ring is
called Abelian if every idempotent is central. Reversible rings are easily shown
to be Abelian.

1. Reversible-over-center rings

In this section we deal with a generalization of a symmetric-over-center ring,
which shall be said to be reversible-over-center. We show that reduced rings
are reversible-over-center, and next that the class of reversible-over-center rings
is quite large. We investigate the structure of centers of Dn(R) for n ≥ 2, and
apply this to observe the relation between the commutativity of R and the
reversible-over-center ring property of D3(R), where R is a given ring.

We start our study by observing a property of reduced rings.

Theorem 1.1. Let R be a reduced ring. If ab ∈ Z(R) for a, b ∈ R, then
ab = ba.

Proof. We first claim that the result holds for domains. Let A be a domain
and suppose ab ∈ Z(A) for a, b ∈ A. If a or b is zero, then we are done. So
assume that a, b ∈ A\{0}. From ab ∈ Z(A), we get ab(ab) = a(ab)b; hence
a(ba− ab)b = 0 and ab = ba follows.

Next let {Pi | i ∈ I} be the set of all minimal prime ideals of R. Then R/Pi
is a domain by [13, Proposition 1.11]. Note that R is a subdirect product of
R/Pi’s, i.e., the homomorphism σ : R →

∏
i∈I R/Pi, with r 7→ (r + Pi), is

injective. Let ab ∈ Z(R) for a, b ∈ R. Then σ(ab) = (ab + Pi) = (a + Pi)(b +
Pi) ∈ Z(R/Pi) for all i; hence σ(ab) = (a + Pi)(b + Pi) = (b + Pi)(a + Pi) =
(ba+ Pi) = σ(ba) by the preceding claim. This yields ab = ba.

(Another proof) This is done through a direct computation. Let ab ∈ Z(R)
for a, b ∈ R. Then we obtain

(ab−ba)2 = abab−baab−abba+b(ab)a = abab−baab−abba+(ab)ba = abab−baab

and

a(ab− ba)2 = a(abab− baab) = aabab− (ab)aab = aabab− aab(ab) = 0.

So we get ab(ab − ba)2 = 0 by [2, Theorem I.3], since R is reduced. Moreover
ba(ab − ba)2 = 0. Combining these two equalities, we have (ab − ba)3 = 0.
Therefore ab = ba also since R is reduced. �
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Following [9], a ring R is called symmetric-over-center if abc ∈ Z(R) for
a, b, c ∈ R implies acb ∈ Z(R). Symmetric-over-center rings are Abelian by
[9, Lemma 2.2(1)], and the symmetric-over-center ring property is left-right
symmetric by [9, Proposition 2.1].

Based on the above, we define a generalization of symmetric-over-center
rings as follows.

Definition 1.2. A ring R is called reversible-over-center if ab ∈ Z(R) for
a, b ∈ R implies ba ∈ Z(R).

It is obvious that a ring R is reversible-over-center (resp., symmetric-over-
center) if and only if ab ∈ Z(R) for a, b ∈ R\{0} implies ba ∈ Z(R) (resp.,
abc ∈ Z(R) for a, b, c ∈ R\{0} implies acb ∈ Z(R)). Symmetric-over-center
rings are clearly reversible-over-center, but not conversely by Remark 1.4(2,5)
to follow.

Notice that Theorem 1.1 is not valid for a reversible-over-center ring which
is not reduced. Consider D3(A) over a commutative ring A. Then D3(A) is
reversible-over-center by Proposition 1.8 below. Observe that E12E23 = E13 ∈
Z(D3(A)) by [9, Lemma 1.1(1)], but E23E12 = 0.

The following contains basic properties of reversible-over-center rings which
do roles throughout this note.

Proposition 1.3. (1) Every reversible-over-center ring is Abelian.
(2) Every reduced ring is reversible-over-center.
(3) Let R be a reduced ring. If AB ∈ Z(D2(R)) for A,B ∈ D2(R), then

AB = BA (hence D2(R) is reversible-over-center).
(4) For a ring R, if Dn(R) for n = 2, 3 is reversible-over-center (resp.,

symmetric-over-center), then R is reversible-over-center (resp., symmetric-over
-center).

(5) Let R be a reversible-over-center ring. If ab ∈ Z(R) for a, b ∈ R, then
(ab)k = (ba)k = akbk = bkak for all k ≥ 2.

(6) Let R be a division ring. Suppose that R is symmetric-over-center. Then,
for every (a, b) ∈ R2, ab = qba for some q ∈ Z(R).

(7) Every free algebra over a commutative domain is symmetric-over-center.

Proof. (1) Let R be a reversible-over-center ring, and assume on the contrary
that there exist e ∈ I(R) and a ∈ R such that ea(1 − e) 6= 0. Since R is
reversible-over-center, [ea(1− e)]e = 0 implies ea(1− e) = e[ea(1− e)] ∈ Z(R).
This yields 0 = (1 − e)[ea(1 − e)] = [ea(1 − e)](1 − e) = ea(1 − e) 6= 0, a
contradiction. Therefore R is Abelian.

(2) is shown by Theorem 1.1.
To prove (3) and (4), we use the fact that Z(D2(R)) = {( x y0 x ) | x, y ∈ Z(R)}

([9, Lemma 1.1(2)]), and will use this fact without reference.
(3) Let R be a reduced ring and suppose that AB ∈ Z(D2(R)) for A =

( a a10 a ), B =
(
b b1
0 b

)
∈ D2(R)\{0}. Then ab, ab1 + a1b ∈ Z(R). We get ab = ba

from ab ∈ Z(R), by Theorem 1.1. Since ab1 + a1b ∈ Z(R), we have c(ab1 +
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a1b) = (ab1 + a1b)c for all c ∈ {a, b, a1, b1}. From these, we obtain

a(ab1 + a1b) = (ab1 + a1b)a = ab1a+ a1(ba)

= ab1a+ (ba)a1 = ab1a+ (ab)a1 = a(ba1 + b1a)

and

(ab1 + a1b)b = b(ab1 + a1b) = (ba)b1 + ba1b

= b1(ba) + ba1b = b1(ab) + ba1b = (ba1 + b1a)b;

and these yield

a[(ab1 + a1b)− (ba1 + b1a)] = 0 and [(ab1 + a1b)− (ba1 + b1a)]b = 0.

Moreover, since R is reduced, we get the following equalities by help of [2,
Theorem I.3]:

[(ab1 + a1b)− (ba1 + b1a)]d = 0 for all d ∈ {ab1, a1b, ba1, b1a},
entailing

[(ab1+a1b)−(ba1+b1a)]2 = [(ab1+a1b)−(ba1+b1a)][(ab1+a1b)−(ba1+b1a)] = 0.

Also since R is reduced, we have (ab1 + a1b) − (ba1 + b1a) = 0. This result
implies AB = BA.

(4) Suppose that D2(R) is reversible-over-center and let ab ∈ Z(R) for a, b ∈
R. Letting α = ( a 0

0 a ), β =
(
b 0
0 b

)
∈ D2(R), we have αβ =

(
ab 0
0 ab

)
∈ Z(D2(R)).

Since D2(R) is reversible-over-center, βα =
(
ba 0
0 ba

)
∈ Z(D2(R)). This implies

that ba ∈ Z(R), concluding thatR is reversible-over-center. A similar argument
to this leads to that D3(R) is reversible-over-center. Moreover, the proof for
the case of symmetric-over-center is much the same.

(5) Let ab ∈ Z(R) for a, b ∈ R. So we obtain (ab)2 = ab(ab) = a(ab)b = a2b2.
Let n ≥ 2. Using induction on n, we have

(ab)n = (ab)n−1(ab) = (an−1bn−1)(ab) = an−1(ab)bn−1 = anbn.

Next, since R is reversible-over-center, ba ∈ Z(R) and thus we also obtain
(ba)n = bnan by a similar argument to the above.

Observe that (ab)2 = a(ba)b = (ba)ab = b(ab)a = (ba)2. Using induction on
n, we have

(ab)n = (ab)n−1(ab) = (ba)n−1(ab) = (ba)n−2(baab) = (ba)n−2(ba)2 = (ba)n.

(6) Let R be symmetric-over-center and a, b ∈ R. If ab ∈ Z(R), then ab = ba
by Theorem 1.1. Assume that ab /∈ Z(R) and let c = (ab)−1. Then cab = 1
implies cba ∈ Z(R) since R is symmetric-over-center. Say cba = p. It then
follows that cbap−1 = 1 and 0 = c(ab − bap−1), entailing ab = bap−1. Letting
q = p−1, the proof is done since p−1 ∈ Z(R).

(7) Let R = S〈X〉 be a free algebra generated by a set X over a commutative
domain S. If |X| = 1, then R ∼= S[x], so R is commutative. Consider the case
of |X| ≥ 2. We claim Z(R) = S. Let k ∈ R be non-constant, i.e., k /∈ S.
Then k ∈ S〈X0〉 for some finite subset X0 of X, where S〈X0〉 is a free algebra
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generated by X0 over S. Here we can let X0 = {x1, . . . , xn} such that every xi
occurs in some monomial of k. Take m ≥ 1 such that 10m > n.

If X0 ( X, then ky 6= yk for all y ∈ X\X0.
Suppose X0 = X. Write k = s0 +s1k1 + · · ·+slkl, where sj ∈ S and every kt

is a nonempty reduced word in X0. Next we use the method in [7, Example 14].
Observe that kt’s can be embedded into the set of natural numbers through
the corresponding “x1 → 10m + 1, x2 → 10m + 2, . . . , xn → 10m + n”, σ say.
Then they are totally ordered via σ (for example, x1 < x2 < x2

1 < x2x1 <
xnx1 < xnx2 < x3

1 · · · because 10m + 1 < 10m + 2 < (10m + 1, 10m + 1) <
(10m+2, 10m+1) < (10m+n, 10m+1) < (10m+n, 10m+2) < (10m+1, (10m+
1, 10m + 1)) < · · · , where (α, β) = α · 10f+1 + β when 10f+1 > β ≥ 10f ). We
identify kt with σ(kt), and let k1 < x2 < · · · < kl after reordering if necessary.
Assume first that every xi occurs in kl. Then k1xi < k2xi < · · · < klxi and
xik1 < xik2 < · · · < xikl for all i. Moreover xikl 6= klxi and xik 6= kxi.
Assume next that some xi does not occur in kl, xs say. Then k1xs < k2xs <
· · · < klxs, xsk1 < xsk2 < · · · < xskl, and xskl 6= klxs. This implies xsk 6= kxs.
Consequently k /∈ Z(R) and Z(R) = S follows.

Now let fgh ∈ Z(R) for f, g, h ∈ R. If one or more of f , g, and h are
non-constant, then fgh is non-constant and so, by the preceding argument,
fgh /∈ Z(R). Hence fgh ∈ Z(R) implies f, g, h ∈ S. Thus R is symmetric-
over-center. �

In the following we elaborate upon Proposition 1.3 with related examples.

Remark 1.4. (1) The converse of Proposition 1.3(1) need not hold as follows.
Let R be an Abelian ring and consider Dn(R) for n ≥ 4. Then Dn(R) is
Abelian by [6, Lemma 2], but it is not reversible-over-center by Example 1.9(2)
to follow.

(2) We recall that the Hamilton quaternions over R, R say. Then R is a
division ring. Let α = a0 +a1i+a2j+a3k 6= 0 with ai ∈ R and β = −a1−a0i+
a3j−a2k in R where a0a2 6= a1a3 or a0a3 6= a1a2. Then αβi =

∑3
i=0 a

2
i ∈ Z(R)

but αiβ /∈ Z(R), showing that R is not symmetric-over-center. Thus D2(R) is
not symmetric-over-center by Proposition 1.3(4), but it is reversible-over-center
by Proposition 1.3(3).

(3) We illuminate Proposition 1.3(3) with examples. (i) The converse need
not hold as can be seen by the commutative ring D2(Z4). (ii) The proposition
need not hold when R is a reversible-over-center ring but not reduced. Let R0

the Hamilton quaternions over R. Then R = D2(R0) is reversible-over-center
by Proposition 1.3(3), and Z(R) = {( a b0 a ) | a, b ∈ R} by [9, Lemma 1.1(2)],
since Z(R0) = R. Consider S = D2(R). Then Z(S) = {(A B

0 A ) | A,B ∈ Z(R)}.
Consider

α =


(

0 i
0 0

) (
j 0
0 j

)
(

0 0
0 0

) (
0 i
0 0

)
 and β =


(

0 1
0 0

) (
k 0
0 k

)
(

0 0
0 0

) (
0 1
0 0

)

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in S. Then αβ = 0 ∈ Z(S) but

βα =


(

0 0
0 0

) (
0 2j
0 0

)
(

0 0
0 0

) (
0 0
0 0

)
 /∈ Z(S), since

(
0 2j
0 0

)
/∈ Z(R).

(4) The argument in (1) also illuminates that Proposition 1.3(4) cannot be
extended to the case of Dn(R) for n ≥ 4 over any ring R.

(5) We apply Proposition 1.3(6) to show that the Hamilton quaternions
R1 over R is not symmetric-over-center. Assume on the contrary that R1 is
symmetric-over-center. Then (1+ i)(j+k) = q(j+k)(1+ i) for some 0 6= q ∈ R
by Proposition 1.3(6), and this yields 2k = 2qj, a contradiction. Thus R1 is
not symmetric-over-center.

As another application of Proposition 1.3(6), let R be the first Weyl algebra
R = K[x][y; ∂/∂x] over a field K of characteristic zero, where each polynomial
of R is written in the form

∑
yiai with ai ∈ K[x]. Then R is a domain that

is simple right Noetherian by [12, Theorem 1.3.5], and so the right quotient
ring R2 of R exists by [12, Corollary 2.1.14 and Theorem 2.1.15]. In fact, R2

is a division ring. Assume on the contrary that R2 is symmetric-over-center.
Then xy = qyx for some 0 6= q ∈ K by Proposition 1.3(6). But xy − yx = 1,
and so 1 = xy − yx = qyx − yx = yx(q − 1), a contradiction. Thus R2 is not
symmetric-over-center.

(6) Relating to Proposition 1.3(2), the class of reduced rings and the class
of symmetric-over-center rings do not imply each other. For example, the
Hamilton quaternions over R and D3(R) over a commutative ring R which is
symmetric-over-center by Proposition 1.8 below.

(7) Let K be a field and A = K〈a, b〉 be the free algebra with noncommuting
indeterminates a, b over K. Let I be the ideal of A generated by ab, and set
R = A/I. Then R is not reversible-over-center since āb̄ = 0 ∈ Z(R) and
b̄ā /∈ Z(R) (in fact, 0 6= b̄āā 6= āb̄ā = 0).

The free algebra A is symmetric-over-center by Proposition 1.3(7). So the
existence of the above ring R also shows that the classes of reversible-over-
center rings and symmetric-over-center rings are not closed under homomorphic
images.

The non-reversible-over-center factor ring in Remark 1.4(7) is constructed
from a free algebra (hence reversible-over-center by Proposition 1.3(7)). One
may compare this fact with the following.

Example 1.5. There exists a non-reversible-over-center ring in which every
nontrivial factor ring is reversible-over-center. Consider R = T2(D) over a
reduced ring D. Nontrivial factor rings of R are R/I ∼= D ⊕ D, R/J ∼= D,
and R/K ∼= D and they are clearly reversible-over-center, where I = ( 0 D

0 0 ),
J = (D D

0 0 ), and K = ( 0 D
0 D ). But R is non-Abelian and so it is not reversible-

over-center by Proposition 1.3(1).
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Next we consider another example of reversible-over-center ring. Let R be
an algebra (with or without identity) over a commutative ring S. Following
Dorroh [4], the Dorroh extension of R by S is the Abelian group R × S with
multiplication given by (r1, s1)(r2, s2) = (r1r2 +s1r2 +s2r1, s1s2), where ri ∈ R
and si ∈ S. Denote it by R⊕dor S.

Proposition 1.6. Let S be a commutative ring and R be a nilpotent ring that
is an algebra over S.

(1) If R2 = 0, then the Dorroh extension of R by S is commutative.
(2) If R3 = 0, then the Dorroh extension of R by S is symmetric-over-center.

Proof. Write D = R ⊕dor S. Let (r, s) ∈ Z(D). Then (r′r + sr′, 0) =
(r′, 0)(r, s) = (r, s)(r′, 0) = (rr′ + sr′, 0) for all r′ ∈ R. This yields r′r = rr′,
and so (r, s) ∈ Z(R) ⊕dor S, entailing Z(D) ⊆ Z(R) ⊕dor S. The converse
inclusion is clear, hence Z(D) = Z(R)⊕D S. We use this fact freely.

(1) Suppose R2 = 0. Then Z(R) = R, so Z(D) = Z(R)⊕DS = R⊕DS = D.
Thus D is commutative.

(2) Suppose R3 = 0. Let αβγ ∈ Z(D) for α = (r1, s1), β = (r2, s2), γ =
(r3, s3) ∈ D. Then, from αβγ = (r1r2r3 + s1r2r3 + s2r1r3 + s3r1r2 + s1s3r2 +
s2s3r1 + s1s2r3, s1s2s3) ∈ Z(D), we get s1r2r3 + s2r1r3 + s3r1r2 + s1s3r2 +
s2s3r1 + s1s2r3 ∈ Z(R), noting r1r2r3 = 0. Observe that ab ∈ Z(R) for all
a, b ∈ R since abr = 0 = rab for all r ∈ R. So s1r2r3 + s2r1r3 + s3r1r2 ∈ Z(R);
hence we obtain s1s3r2 +s2s3r1 +s1s2r3 ∈ Z(R) from s1r2r3 +s2r1r3 +s3r1r2 +
s1s3r2 + s2s3r1 + s1s2r3 ∈ Z(R).

While, αγβ = (s2r1r3 + s3r1r2 + s1r3r2 + s1s3r2 + s2s3r1 + s1s2r3, s1s2s3),
noting r1r3r2 = 0. But s2r1r3 +s3r1r2 +s1r3r2 and s1s3r2 +s2s3r1 +s1s2r3 are
contained in Z(R) by the arguments above. Consequently s2r1r3 + s3r1r2 +
s1r3r2 + s1s3r2 + s2s3r1 + s1s2r3 ∈ Z(R), and (r1r3r2 + s2r1r3 + s3r1r2 +
s1r3r2+s1s3r2+s2s3r1+s1s2r3, s1s2s3) ∈ Z(D) follows; entailing αγβ ∈ Z(D).
Therefore D is symmetric-over-center. �

Let R be a ring and n ≥ 2. Note that both Matn(R) and Tn(R) cannot be
reversible-over-center for all n ≥ 2 over any ring R, by Proposition 1.3(1). So
we consider the ring Dn(R). Write Nn(R) = {(aij) ∈ Dn(R) | aii = 0 for all i}.
The center of D3(R) is

{(
a 0 b
0 a 0
0 0 a

)
| a, b ∈ Z(R)

}
by [9, Lemma 1.1(1)], where R

is a given ring. We extend this result to the general case, i.e., Dn(R) for n ≥ 4.

Proposition 1.7. Let R be a ring and n ≥ 2. The center of Dn(R) is



a 0 0 · · · 0 b
0 a 0 · · · 0 0
0 0 a · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a 0
0 0 0 · · · 0 a


| a, b ∈ Z(R)


.



730 K.-J. CHOI, T. K. KWAK, AND Y. LEE

Proof. We extend the method in the proof of [9, Lemma 1.1(1)] to the case of
n ≥ 4. Let D = Dn(R) and first observe that the subring



b 0 0 · · · 0 c
0 b 0 · · · 0 0
0 0 b · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · b 0
0 0 0 · · · 0 b


| b, c ∈ Z(R)


of R is contained in Z(D).

Let M = (aij) ∈ Z(D) with aii = a for all i. Consider arbitrary matrix
(rij) ∈ R with r = rii for all i. Then r is arbitrary in R, and (rij)M =
M(rij) implies ra = ar. This implies a ∈ Z(R) because r is arbitrary in R.
Furthermore N = M − (aIn) is contained in Z(D) ∩ Nn(R), where In is the
identity matrix in R. We use this fact freely.

Let s ∈ {2, 3, . . . , n − 1}. Then the (1, n)-entry of NEsn is a1s, and the
(1, n)-entry of EsnN = 0 is zero. But NEsn = EsnN , forcing a1s = 0 for all s.

Let t ∈ {3, 4, . . . , n − 1}. Then the (2, n)-entry of NEtn is a2t, and the
(2, n)-entry of EtnN = 0 is zero. But NEtn = EtnN , forcing a2t = 0 for all t.

Proceeding in this manner, we finally obtain that aij = 0 for all i, j ∈
{1, 2, . . . , n− 1} with i 6= j; and

N =



0 0 0 · · · 0 a1n

0 0 0 · · · 0 a2n

0 0 0 · · · 0 a3n

...
...

...
. . .

...
...

0 0 0 · · · 0 a(n−1)n

0 0 0 · · · 0 0


.

Next, the (1, n)-entry of E12N is a2n, and the (1, n)-entry of NE12 = 0 is
zero. But E12N = NE12, forcing a2n. Similarly we can obtain akn = 0 for all
k = 3, . . . , n− 1 by using E1kN = NE1k = 0.

Consequently, we get

M =



a 0 0 · · · 0 a1n

0 a 0 · · · 0 0
0 0 a · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a 0
0 0 0 · · · 0 a


.

Next we have

(rij)aIn + (ra1n)E1n = (rij)aIn + (rij)a1nE1n = (rij)[aIn + a1nE1n] = (rij)M

= M(rij) = [aIn + a1nE1n](rij) = aIn(rij) + a1nE1n(rij)
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= aIn(rij) + (a1nr)E1n.

Since a ∈ Z(R), (rij)aIn = aIn(rij) and so (ra1n)E1n = (a1nr)E1n. This yields
a1nr = ra1n; hence a1n ∈ Z(R). This completes the proof. �

In fact, the center of Dn(R) is isomorphic to D2(Z(R)) by Proposition 1.7.
The following is an extension of [9, Proposition 1.2].

Proposition 1.8. For a ring R the following conditions are equivalent:
(1) R is a commutative ring;
(2) D3(R) is a symmetric-over-center ring;
(3) D3(R) is a reversible-over-center ring.

Proof. (1) ⇒ (2) is proved by Proposition 1.6(2), noting that T =
(

0 R R
0 0 R
0 0 0

)
is

an algebra over R, T 3 = 0, and D3(R) ∼= T ⊕dor R. (2) ⇒ (3) is obvious. For
the proof of (3) ⇒ (1), let D3(R) be reversible-over-center and assume on the
contrary that A is noncommutative. Take a /∈ Z(R).

Let M1 =
(

0 0 0
0 0 a
0 0 0

)
and M2 =

(
0 1 0
0 0 0
0 0 0

)
in D3(R). Then M1M2 = 0 ∈

Z(D3(R)). But M2M1 =
(

0 0 a
0 0 0
0 0 0

)
/∈ Z(D3(R)) by Proposition 1.7 because

a /∈ Z(R). This is contrary to D3(R) being reversible-over-center. Thus R is
commutative. �

The direction (1) ⇒ (2) in Proposition 1.8 is also proved by [9, Propo-
sition 1.2]. Considering Proposition 1.8, it is natural to conjecture that if
D2(R) is symmetric-over-center, then R is commutative, and that Dn(R) is
also reversible-over-center for n ≥ 4. However the following provides coun-
terexamples for these.

Example 1.9. (1) Let R be a noncommutative free algebra over a commutative
domain S. Then Z(R) = S by the proof of Proposition 1.3(7). Let ABC ∈
Z(D2(R)) for A = (aij), B = (bij), C = (cij) ∈ D2(R). Then aiibiicii ∈ Z(R)
and a11b11c12 +a11b12c11 +a12b11c11 ∈ Z(R) by Proposition 1.7. But aiibiicii ∈
Z(R) implies aii, bii, cii ∈ S, since Z(R) = S. Then a11b11c12 + a11b12c11 +
a12b11c11 = a11c11b12+a11c12b11+a12c11b11; hence ABC = ACB. Thus D2(R)
is symmetric-over-center.

(2) Let A be any ring. We first consider the case of D4(A). Let

M1 =


0 0 1 1
0 0 0 1
0 0 0 1
0 0 0 0

 , and M2 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


be matrices in D4(A). Then

M1M2 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

∈Z(D4(A)), but M2M1 =


0 0 0 1
0 0 0 1
0 0 0 0
0 0 0 0

 /∈Z(D4(A))
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by Proposition 1.7. ThusD4(A) is not reversible-over-center. This computation
can be applicable to show that Dn(A) is not reversible-over-center for n ≥ 5.

Recall that an element u of a ring R is right regular if ur = 0 implies r = 0 for
r ∈ R. Similarly, left regular elements can be defined. An element is regular if it
is both left and right regular (and hence not a zero divisor). A multiplicatively
closed subset S of a ring R is said to satisfy the right Ore condition if for each
a ∈ R and b ∈ S, there exist a1 ∈ R and b1 ∈ S such that ab1 = ba1. It is
shown, by [12, Theorem 2.1.12], that S satisfies the right Ore condition and
S consists of regular elements if and only if the right quotient ring of R with
respect to S exists. Notice that let R be a right Ore ring and RS be the right
quotient ring of R. Then every element in RS is expressed by rs−1 with r ∈ R
and s ∈ S. Let rs−1 ∈ Z(RS). Then r = (rs−1)s = s(rs−1) yields rs = sr
(equivalently, rs−1 = s−1r).

Given reversible-over-center rings, we can construct other kinds of reversible-
over-center rings via right quotient rings.

Theorem 1.10. (1) Let S be multiplicatively closed subset of a ring R, and
suppose that S satisfies the right Ore condition and S consists of regular ele-
ments. If RS is reversible-over-center, then so is R.

(2) Let R be a ring and S consists of central regular elements in R. Then R
is reversible-over-center if and only if so is RS.

Proof. (1) It is easily checked that Z(R) ⊆ Z(RS). Suppose that RS is
reversible-over-center. Let ab ∈ Z(R) for a, b ∈ R. Then ab ∈ Z(RS). Since
RS is reversible-over-center, ab ∈ Z(RS) implies ba ∈ Z(RS). But ba ∈ R, so
ba ∈ Z(R) = R ∩ Z(RS). Thus R is reversible-over-center.

(2) Note first Z(RS) = S−1Z(R). Assume that R is reversible-over-center,
and let αβ ∈ Z(RS) for α = u−1a, β = v−1b with u, v ∈ S and a, b ∈ R.
Since αβ = (uv)−1(ab) ∈ Z(RS), we have ab ∈ Z(R) and so ba ∈ Z(R)
by assumption. Thus βα = v−1bu−1a = (uv)−1(ba) ∈ S−1Z(R) = Z(RS).
Therefore RS is reversible-over-center. The proof of the converse is almost
same as one of (1). �

Let R be a ring and consider R[x]. Since S = {xn | n = 0, 1, 2, . . .} is a right
Ore subset of R[x], there exists the right quotient ring R[x]S . R[x]S is denoted
by R[x;x−1] and said to be the Laurent polynomial ring in x over R. Since S
is a multiplicatively closed subset of R[x] and R[x;x−1] = S−1R[x], we get the
following by Theorem 1.10.

Corollary 1.11. Let R be a ring. Then R[x] is reversible-over-center if and
only if so is R[x;x−1].

We also obtain other elementary properties for reversible-over-center rings.

Proposition 1.12. Let {Rγ | γ ∈ Γ} be a family of rings. Then Rγ is
reversible-over-center for every γ ∈ Γ if and only if the direct product R =∏
γ∈ΓRγ of Rγ ’s is reversible-over-center.
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Proof. Note first Z(R) =
∏
γ∈Γ Z(Rγ). Suppose that R =

∏
γ∈ΓRγ is revers-

ible-over-center, and let ab ∈ Z(Rγ) for a, b ∈ Rγ . Consider two sequences
α = (aγ)γ∈Γ, β = (bγ)γ∈Γ ∈ R such that aγ = a, bγ = b, and aδ = 0, bδ = 0
for all δ 6= γ. Then αβ ∈ Z(R). Since R is reversible-over-center, βα ∈ Z(R).
This implies ba ∈ Z(Rγ).

Conversely, suppose that every Rγ is reversible-over-center, and let α =
(aγ)γ∈Γ, β = (bγ)γ∈Γ ∈ R with αβ ∈ Z(R). Then aγbγ ∈ Z(Rγ) for all γ ∈ Γ.
Since Rγ is reversible-over-center, we get bγaγ ∈ Z(Rγ). This implies that
βα ∈ Z(R), concluding that R =

∏
γ∈ΓRγ is reversible-over-center. �

The following comes from Proposition 1.12, since R = eR ⊕ (1 − e)R for
e2 = e ∈ Z(R).

Corollary 1.13. Let R be a ring and e2 = e ∈ Z(R). Then R is reversible-
over-center if and only if both eR and (1− e)R are reversible-over-center.

2. Properties related to radicals

In this section we study the structure of nilradicals in symmetric-over-center
rings and reversible-over-center rings. By help of these results we are able to
provide useful information to the structure of radicals of polynomial rings.

Lemma 2.1 ([9, Proposition 2.1]). A ring R is symmetric-over-center if and
only if a1a2 · · · an ∈ Z(R) for a1, . . . , an ∈ R implies aθ(1)aθ(2) · · · aθ(n) ∈ Z(R)
for any permutation θ of the set {1, 2, . . . , n}, where n is any positive integer.

We extend the facts in [9, Proposition 2.4] to the general cases by help of
Lemma 2.1.

Theorem 2.2. Let R be a symmetric-over-center ring. Then we have the
following:

(1) If an = 0 for a ∈ R and n ≥ 2, then r0ar1ar2a · · · arn−1arn ∈ Z(R) for
all r0, r1, . . . , rn ∈ R.

(2) If a ∈ N(R), then RaR is nilpotent.
(3) W (R) = N∗(R) = N∗(R) = N(R).
(4) J(R[x]) = W (R[x]) = N∗(R[x]) = N∗(R[x]) = N(R[x]) = N(R)[x] =

W (R)[x], and especially R[x]/J(R[x]) is a reduced ring.

Proof. (1) Let an = 0 for a ∈ R and n ≥ 2. Then anr0r1 · · · rn = 0 ∈ Z(R) for
all r0, r1, . . . , rn ∈ R. SinceR is symmetric-over-center, r0ar1ar2a · · · rn−1arn ∈
Z(R) by Lemma 2.1.

(2) Suppose that an = 0 for a ∈ R and n ≥ 2. Since R is symmetric-over-
center, we have

ri0ari1ari2a · · · ari(n−1)arin ∈ Z(R)

for all ri0, ri1, . . . , rin ∈ R by (1), where i is any in {1, 2, . . .}. Let

bi = ri0ari1ari2a · · · ari(n−1)arin
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for i = 1, 2, . . . , n− 1. Then bi ∈ Z(R) and we obtain

0 = s1a
n(b1b2 · · · bn−1)s2 = s1ab1ab2a · · · abn−1as2

= s1a(r10ar11ar12a · · · ar1n−1ar1n)a(r20ar21ar22a · · · ar2(n−1)ar2n)a

· · · a(r(n−1)0ar(n−1)1ar(n−1)2a · · · ar(n−1)(n−1)ar(n−1)n)as2

= [s1ar10ar11ar12a · · · ar1(n−1)][ar1n][ar20ar21ar22a · · · ar2(n−1)][ar2n]

· · · [ar(n−1)0ar(n−1)1ar(n−1)2a · · · ar(n−1)(n−1)][ar(n−1)n][as2],

where s1, s2 ∈ R. Any element in

(RaR)n(RaR)(RaR)n(RaR) · · · (RaR)n(RaR)(RaR) = [(RaR)n]n−1(RaR)n

= (RaR)n
2

is a finite sum of elements of the form in the preceding equality. This yields

(RaR)n
2

= 0.
(3) Let a ∈ N(R). Then RaR is nilpotent by (2), and a ∈ W (R) follows.

This completes the proof, considering the inclusion W (R) ⊆ N∗(R) ⊆ N∗(R) ⊆
N(R).

(4) By (3), we have W (R) = N∗(R) = N∗(R) = N(R). The remainder of
the proof is similar to one of [9, Proposition 2.4]. �

Let R = D3(A) over a commutative ring A. Then R is a symmetric-over-
center ring by Proposition 1.8, and note

W (R) =


a b c

0 a d
0 0 a

 | a ∈ N(A) and b, c, d ∈ A

 = N(R).

This provides us an example of Theorem 2.2(3).
In the following we see similar results to Theorem 2.2 for reversible-over-

center rings. For a ring R and k ≥ 2, write Nk(R) = {a ∈ N(R) | ak = 0}.

Theorem 2.3. For a reversible-over-center ring R, we have the following re-
sults.

(1) If ab = 0 for a, b ∈ R, then bRa ⊆ Z(R).
(2) If ab = 0 for a, b ∈ R, then (RaRbR)2 = 0 and (RbRaR)2 = 0. Espe-

cially, if a2 = 0, then (RaR)3 = 0.
(3) Suppose that aRa ⊆ Z(R) for all a ∈ N(R). Then

W (R) = N∗(R) = N∗(R) = N(R).

(4) Suppose that aRa ⊆ Z(R) for all a ∈ N(R). Then

J(R[x])= W (R[x])= N∗(R[x])= N∗(R[x])= W (R)[x]= N(R)[x]= N(R[x]),

and R[x]/J(R[x]) is a reduced ring.
(5) Suppose N(R) = N2(R). Then

W (R) = N∗(R) = N∗(R) = N(R)
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and

J(R[x])= W (R[x])= N∗(R[x])= N∗(R[x])= W (R)[x]= N(R)[x]= N(R[x]).

Proof. (1) Let ab = 0 for a, b ∈ R. Then abr = 0 ∈ Z(R) for all r ∈ R. Since
R is reversible-over-center, bra ∈ Z(R) and so bRa ⊆ Z(R).

(2) Let ab = 0 for a, b ∈ R. Then bRa ⊆ Z(R) by (1). This yields that
ras(bta)ubv = ra(bta)subv = 0 for any r, s, t, u, v ∈ R. Thus (RaRbR)2 = 0.
Similarly we have (RbRaR)2 = 0. Next let a2 = 0, and use a in place of b in
the preceding argument. Then aRa ⊆ Z(R) and ras(ata)u = ra(ata)su = 0
for any r, s, t, u ∈ R, entailing (RaR)3 = 0.

(3) Assume that aRa ⊆ Z(R) for all a ∈ N(R). Let a ∈ N(R) with an = 0
for n ≥ 2. By assumption, we obtain that for any r1, r2, . . . , a2n−1, a2n ∈ R,

r1ar2ar3a · · · r2n−2ar2n−1ar2n

= r1a(ar2n−1a)r2ar3a · · · r2n−3ar2n−2r2n

= r1a
2r2n−1ar2ar3a · · · r2n−4(ar2n−3a)r2n−2r2n

= r1a
3r2n−3ar2n−1ar2ar3a · · · r2n−6(ar2n−5a)r2n−4r2n−2r2n

...

= r1a
nr3ar5 · · · r2n−1ar2r4 · · · r2n−2r2n = 0,

entailing (RaR)2n−1 = 0. Therefore a ∈W (R), and this completes the proof.
(4) Let aRa ⊆ Z(R) for all a ∈ N(R). Then we have W (R) = N∗(R) =

N∗(R) = N(R) by (3). The remainder of the proof is the same as the proof of
Theorem 2.2(4).

(5) The proof is done by (1), (3), and (4). �

We illustrate Theorem 2.3 with examples.

Example 2.4. (1) Related to Theorem 2.3(1,3), there exists a reversible-over-
center ring R such that aRa ⊆ Z(R) for a ∈ N(R) with a2 6= 0. Consider
R = D3(A) over a commutative ring A. Then R is a reversible-over-center ring
with

Z(R) =


x 0 y

0 x 0
0 0 x

 | x, y ∈ A


by Propositions 1.7 and 1.8. If we take a =
(

0 1 1
0 0 1
0 0 0

)
∈ R, then aRa =

(
0 0 c
0 0 0
0 0 0

)
∈

Z(R) for any c ∈ A, but a2 =
(

0 0 1
0 0 0
0 0 0

)
6= 0 and a3 = 0.

(2) There exists a symmetric-over-center (hence reversible-over-center) ring
R such that aRa * Z(R) for some a ∈ N(R). Let A = Z8 and consider
the ring R = D3(A). Then R is symmetric-over-center by Theorem 1.8. Let

a =
(

2 1 1
0 2 1
0 0 2

)
∈ N(R) and r =

(
1 0 1
0 1 0
0 0 1

)
∈ R. Then ara =

(
4 4 1
0 4 4
0 0 4

)
∈ aRa but

ara /∈ Z(R).



736 K.-J. CHOI, T. K. KWAK, AND Y. LEE

Notice that a reversible-over-center ring R, such that aRa ⊆ Z(R) for all
a ∈ N(R), need not be symmetric-over-center as can be seen by the Hamilton
quaternions over R which is reversible-over-center by Proposition 1.3(4) but
not symmetric-over-center by Remark 1.4(2).

Recall that a ring R is said to be semiprime (resp., semiprimitive) if N∗(R) =
0 (resp., J(R) = 0). Reduced rings are clearly semiprime. Following [5], a ring
R is said to be von Neumann regular if for each a ∈ R there exists b ∈ R
such that a = aba. Every von Neumann regular ring is clearly semiprimitive
(hence semiprime). Observe that for a given ring R, N(R) = 0 is equivalent to
N2(R) = 0.

Corollary 2.5. (1) Let R be a reversible-over-center ring. If N(R) 6= 0, then
W (R) 6= 0.

(2) For a semiprime ring R, the following conditions are equivalent: (i) R
is reduced; (ii) R is symmetric; (iii) R is reversible; (iv) R is reversible-over-
center.

(3) For a von Neumann regular ring R, the following conditions are equi-
valent: (i) R is reduced; (ii) R is symmetric; (iii) R is reversible; (iv) R is
reversible-over-center; (v) R is Abelian.

(4) If a ring R is semiprime and reversible-over-center, then R[x] is semi-
primitive.

(5) Let R be a semiprime ring. Then the following conditions are equivalent:
(i) R is reversible-over-center; (ii) R[x] is reduced; (iii) R[x] is symmetric; (iv)
R[x] is reversible; (v) R[x] is reversible-over-center.

Proof. (1) Let N(R) 6= 0. Then N2(R) 6= 0, and (RaR)3 = 0 for all 0 6= a ∈
N2(R) by Theorem 2.3(2). This implies W (R) 6= 0.

(2) Recall that N∗(R) = N∗(R) = N(R) when R is a reversible ring. So the
conditions (i), (ii), and (iii) are equivalent since R is semiprime. (i) ⇒ (iv) is
proved by Proposition 1.3(2). Let R be reversible-over-center, and assume on
the contrary that N(R) 6= 0 (equivalently, N2(R) 6= 0). Then N∗(R) 6= 0 by
(1), contrary to N∗(R) = 0. Thus N(R) = 0, proving (iv) ⇒ (i).

(3) The equivalent relations among the conditions (i), (ii), (iii), and (iv) are
proved by (2) since a von Neumann regular ring is semiprime. (iv)⇒(v) comes
from Proposition 1.3(1), and (v) ⇒ (i) is shown by [5, Theorem 3.2].

(4) Let R be semiprime and reversible-over-center. Then R is reduced by
(2). Hence R[x] is semiprimitive by [1, Theorem 1].

(5) A ring R is semiprime if and only if R[x] is semiprime by [1, Theorem
3]. So the result is obtained from (2), noting that R is reduced if and only if
so is R[x]. �

The condition “R is Abelian” need not be contained in Corollary 2.5(2).
We use the argument in [8, Theorem 2.2(2)]. Let S be a reduced ring and
define a map σ : Dn(S) → Dn+1(S) by B 7→ (B 0

0 B ), where n ≥ 1. Then
Dn(S) can be considered as a subring of Dn+1(S) via σ (i.e., B = σ(B) for
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B ∈ Dn(S)). Set R = ∪∞n=1Dn(S). Then R is a semiprime ring by [8, Theorem
2.2(2)], and moreover R is Abelian by applying [6, Lemma 2]. However R is
not reversible-over-center by Example 1.9(2). Observe next that the Hamilton
quaternions over R is both von Neumann regular and reversible-over-center,
but not symmetric-over-center as noted above. Corollary 2.5(3) is illuminated
with this argument, when the condition of symmetric-over-center is considered.

Considering Corollary 2.5(4), one may ask whether a reversible-over-center
ring is semiprimitive when it is semiprime. The answer is negative as can be
seen by the power series ring R[[x]] over a commutative domain R, noting that
R[[x]] is commutative (hence symmetric-over-center) and J(R[[x]]) = J(R) +
xR[[x]].

We do not know any example of symmetric-over-center (or reversible-over-
center) ring R over which R[x] is not reversible-over-center. But we provide an
information which may be helpful to think of this problem. For a ring R, it is
easily checked that Z(R[x]) = Z(R)[x].

Remark 2.6. Let R be a symmetric-over-center ring. We claim that if (a0 +

a1x)(b0 + b1x) ∈ Z(R[x]) for a0 + a1x, b0 + b1x ∈ R[x], then (a2k

0 + a2k

1 x)(b2
k

0 +

b2
k

1 x) ∈ Z(R[x]) for any k ≥ 0.
To see this suppose (a0+a1x)(b0+b1x) ∈ Z(R[x]) for a0+a1x, b0+b1x ∈ R[x].

Then a0b0, a1b1, a0b1 + a1b0 ∈ Z(R). Write a0b1 + a1b0 = q with q ∈ Z(R).
Multiplying a0b1 + a1b0 = q by a0 on the left and b1 on the right (resp., by a1

on the left and b0 on the right), we have a0a0b1b1 + a0a1b0b1 = qa0b1 (resp.,
a1a0b1b0 + a1a1b0b0 = qa1b0). Adding these, we obtain

(∗) a2
0b

2
1 + a2

1b
2
0 = q(a0b1 + a1b0)− a0a1b0b1 − a1a0b1b0.

Since a0b0, a1b1 ∈ Z(R), we get a0a1b0b1, a1a0b1b0 ∈ Z(R) by Lemma 2.1.
Then we obtain a2

0b
2
1 +a2

1b
2
0 ∈ Z(R) from the equality (∗), since q(a0b1 +a1b0) ∈

Z(R). Moreover, by Lemma 2.1, we get a2
0b

2
0, a

2
1b

2
1 ∈ Z(R) from a0b0, a1b1 ∈

Z(R). Thus (a2
0 + a2

1x)(b20 + b21x) ∈ Z(R[x]).
Next we repeat the preceding argument by using a2

i and b2j in place of ai and

bj , respectively. Then we obtain (a22

0 +a22

1 x)(b2
2

0 +b2
2

1 x) ∈ Z(R[x]). Proceeding

inductively we finally have (a2k

0 + a2k

1 x)(b2
k

0 + b2
k

1 x) ∈ Z(R[x]) for any k ≥ 0.
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