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ON LEFT α-MULTIPLIERS AND COMMUTATIVITY OF

SEMIPRIME RINGS

Shakir Ali and Shuliang Huang

Abstract. Let R be a ring, and α be an endomorphism of R. An additive
mapping H : R −→ R is called a left α-multiplier (centralizer) if H(xy) =
H(x)α(y) holds for all x, y ∈ R. In this paper, we shall investigate the

commutativity of prime and semiprime rings admitting left α-multipliers
satisfying any one of the properties: (i)H([x, y])−[x, y] = 0, (ii)H([x, y])+
[x, y] = 0, (iii) H(x ◦ y)−x ◦ y = 0, (iv) H(x ◦ y)+x ◦ y = 0, (v) H(xy) =

xy, (vi) H(xy) = yx, (vii) H(x2) = x2, (viii) H(x2) = −x2 for all x, y in
some appropriate subset of R.

1. Introduction

This research has been motivated by the works of S. Ali, C. Haetinger [2]
and M. Ashraf, S. Ali [4]. Throughout the present paper R will represent
an associative ring with center Z(R). For any x, y ∈ R, the symbol [x, y]
and x ◦ y stand for the commutator xy − yx and anti-commutator xy + yx,
respectively. A ring R is called n-torsion free, where n > 1 is an integer, if
whenever nx = 0, with x ∈ R, then x = 0. Recall that a ring R is prime if for
any a, b ∈ R, aRb = {0} implies a = 0 or b = 0 and is semiprime if for any
a ∈ R, aRa = {0} implies a = 0. If S is a subset of R, then we can define the
left (resp. right) annihilator of S as l(S) = {x ∈ R | xs = 0 for all s ∈ S}
(resp. r(S) = {x ∈ R | sx = 0 for all s ∈ S}). It is well-known that if
I is an ideal of a semiprime ring R, then l(I) = r(I). An additive mapping
d : R −→ R is called a derivation if d(xy) = d(x)y+xd(y) holds for all x, y ∈ R.
Following [13], an additive mapping H : R −→ R is called a left (resp. right)
multiplier (centralizer) of R if H(xy) = H(x)y (resp. H(xy) = xH(y)) holds
for all x, y ∈ R. If H is both left as well as a right multiplier, then it is called
a multiplier. The concept of generalized derivation has been introduced by M.
Bresar [6], an additive mapping F : R −→ R is called a generalized derivation
if there exists a derivation d : R −→ R such that F (xy) = F (x)y+ xd(y) holds
for all x, y ∈ R, and d is called the associated derivation of F . Obviously,
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generalized derivation with d = 0 covers the concept of left multipliers. It is
easy to see that F : R −→ R is a generalized derivation if and only if F is of
the form F = d+H, where d is a derivation and H is a left multiplier.

Recently, E. Albas [1] introduced the notion of α-multipliers (centralizers)
of R, i.e., an additive mapping H : R −→ R is called a left (resp. right) α-
multiplier(centralizer) of R if H(xy) = H(x)α(y) (resp. H(xy) = α(x)H(y))
holds for all x, y ∈ R, where α is an endomorphism of R. If H is both left as
well as right α-centralizer, then it is natural to callH an α-multiplier. It is clear
that for an additive mapping H : R −→ R associated with a homomorphism α :
R −→ R, if La(x) = aα(x) and Ra(x) = α(x)a for a fixed element a ∈ R and for
all x ∈ R, then La is a left α-centralizer and Ra is a right α-multiplier. Clearly
every multiplier is a special case of an α-multiplier with α = idR, the identity
map on R. Following [2], suppose H : R −→ R is an additive mapping and
α is an endomorphism of R, if H(x2) = H(x)α(x) (resp. H(x2) = α(x)H(x))
holds for all x ∈ R, then H is called a Jordan left (resp. right) α-multiplier.
Obviously every left (resp. right) α-multiplier is a Jordan left (resp. right)
α-multiplier. The converse in general is not true (see [2], Example 2.1). In [2],
S. Ali and C. Haetinger proved that every Jordan left (resp. right) α-multiplier
on a 2-torsion-free semiprime ring is a left (resp. right) α-multiplier, where α is
an automorphism of R. Considerable work has been done on this topic during
the last couple of decades (cf., [1, 4, 7, 8, 11, 12, 13] where further references
can be found).

In [10], M. A. Quadri et al. established that a prime ring R must be com-
mutative if it admits a generalized derivation F associated with a nonzero
derivation d such that F ([x, y]) = [x, y] (resp. F ([x, y]) + [x, y] = 0) hold for
all x, y ∈ I. In this direction, it seems natural to ask what we can say about
the commutativity of a prime R if the generalized derivation F in the above
conditions is replaced by a left multiplier. In the year 2008, the first author to-
gether with M. Ashraf [4] have investigated this problem for certain situations
involving left multipliers. The purpose of this paper is to extend above men-
tioned results for semiprime rings admitting left α-multipliers. Some related
results have also been discussed in the setting of left α-multipliers. We shall
make extensive use of the following basic commutator identities throughout the
discussion without any specific mention:

[xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z,

x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z,

(xy) ◦ z = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z].

We shall restrict our attention to left α-multipliers (centralizers) since all
results presented in this paper are also true for right α-multipliers because of
left and right symmetry.



ON LEFT α-MULTIPLIERS AND COMMUTATIVITY OF SEMIPRIME RINGS 71

2. Main results

In [4, Theorems 2.1 and 2.2], the first author together with M. Ashraf proved
that if a prime ring R admits a nonzero left multiplier H with H(x) ̸= x for
all x in a nonzero ideal I of R such that H([x, y]) = [x, y] for all x, y ∈ I or
H([x, y]) + [x, y] = 0 for all x, y ∈ I, then R is commutative. In the following
theorem, we extend Theorems 2.1 and 2.2 of [4] for semiprime rings.

Theorem 2.1. Let R be a semiprime ring and I a nonzero ideal of R. Suppose
that α is an endomorphism of R and H is a left α-multiplier such that α is not
the identity map on I. If one of the following conditions holds:

(i) H([x, y])− [x, y] = 0 for all x, y ∈ I,
(ii) H([x, y]) + [x, y] = 0 for all x, y ∈ I,
(iii) for all x, y ∈ I, either H([x, y])− [x, y] = 0 or H([x, y]) + [x, y] = 0,

then I ⊆ Z(R).

Proof. (i) By the given hypothesis we have

(2.1) H([x, y]) = [x, y] for all x, y ∈ I.

If H = 0, then [x, y] = 0 for all x, y ∈ I. Replacing y by yr in this relation,
we get 0 = [x, yr] = [x, y]r + y[x, r] = y[x, r] for all x, y ∈ I and r ∈ R. In
particular, both yst[x, r] = 0 and syt[x, r] = 0 for all x, y ∈ I and r, s, t ∈ R.
Combining the last two relations, we arrive at [y, s]R[x, r] = {0} for all x, y ∈ I
and r, s ∈ R. In particular, [x, r]R[x, r] = {0} for all x ∈ I and r ∈ R. The
semiprimeness of R forces that [x, r] = 0, hence I ⊆ Z(R).

Now we assume that H ̸= 0, replacing y by yx in (2.1) we find that
H([x, yx]) = [x, yx] for all x, y ∈ I. This can be rewritten as H([x, y]x) =
[x, y]x, which implies that

(2.2) H([x, y])α(x) = [x, y]x for all x, y ∈ I.

On combining (2.1) and (2.2), we obtain that

(2.3) [x, y](α(x)− x) = 0 for all x, y ∈ I.

Replacing y by yz in (2.3), we get

(2.4) [x, y]z(α(x)− x) = 0 for all x, y, z ∈ I.

That is
[x, y]I(α(x)− x) = {0} for all x, y ∈ I.

Since I is an ideal of R, we have IR ⊆ I and hence

(2.5) [x, y]IR(α(x)− x) = {0} for all x, y ∈ I.

Since R is semiprime, it must contain a family P = {Pα : α ∈ ∧} of prime
ideals such that

∩
α Pα = (0) (see [3] for more details). Let P denote a fixed

one of the Pα. Then from (2.5) it follows that for each x ∈ I, either

(a) α(x)− x ∈ P ; or
(b) [x, y]I ⊆ P for all y ∈ I.
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Define Ia to be the set of x ∈ I for which (a) holds and Ib the set of x ∈ I
for which (b) holds. Note that both are additive subgroups of I and their union
is equal to I. Thus either Ia = I or Ib = I, and hence P satisfies one of the
following:

(a)
′
α(x)− x ∈ P for all x ∈ I;

(b)
′
[x, y]I ⊆ P for all x, y ∈ I.

Call a prime ideal in P a type-one prime if it satisfies (a)
′
, and call all

other members of P type-two primes. Define P1 and P2 respectively as the
intersection of all type-one primes and the intersection of all type-two primes,
and note that

(2.6) P1P2 = P2P1 = P1 ∩ P2 = {0}.

Now, suppose that for all x ∈ I, α(x)− x ∈ P . This means that α(x)− x ∈∩
α Pα = {0}, i.e., α(x) = x for all x ∈ I, a contradiction. Therefore, there

exists an element x ∈ I such that α(x)− x ̸∈ P , which implies that [x, y]I ⊆ P
for all y ∈ I. Let z be any element of I. On the one hand, if α(z+x)−(z+x) ̸∈
P , then [z + x, y]I ⊆ P and hence [z, y]I ⊆ P because of [x, y]I ⊆ P . On the
other hand, if α(z + x) − (z + x) ∈ P , then α(z) − z ̸∈ P since α(x) − x ̸∈ P ,
and hence [z, y]I ⊆ P . Thus we conclude that [z, y]I ⊆ P for all y, z ∈ I,
hence [z, y]I ⊆

∩
α Pα = {0}. This implies that [z, y] ∈ l(I). Since I is an ideal

of R, it is clear that [z, y] ∈ I for all y, z ∈ I. Therefore, [z, y] ∈ l(I)
∩
I =

{0}, otherwise l(I)
∩
I is a nonzero ideal of R and (l(I)

∩
I)2 ⊆ l(I)I = {0}

contradicting the fact R having no nonzero nilpotent ideals. Therefore, the
arguments in the beginning yields that I ⊆ Z(R).

(ii) If H is a left α-multiplier satisfying the property H([x, y])+[x, y] = 0 for
all x, y ∈ I, then the left α-multiplier −H satisfies the condition: (−H)([x, y])−
[x, y] = 0 for all x, y ∈ I, and hence I ⊆ Z(R) by (i).

(iii) For each fixed x ∈ I, we set Ix = {y ∈ I | H([x, y]) − [x, y] = 0} and
I∗x = {y ∈ I | H([x, y]) + [x, y] = 0}. Then, Ix and I∗x are both additive
subgroups of I such that I = Ix ∪ I∗x. But a group can not be a union of
two its proper subgroups, so we have either Ix = I or I∗x = I. Further, using
similar arguments, we obtain I = {x ∈ I | Ix = I} or I = {x ∈ I | I∗x = I}.
Now, we apply (i) and (ii). This completes the proof of the theorem. □

Theorem 2.2. Let R be a semiprime ring and I a nonzero ideal of R. Suppose
that α is an endomorphism of R and H is a left α-multiplier such that α is not
the identity map on I. If one of the following conditions holds:

(i) H(xy) = xy for all x, y ∈ I,
(ii) H(xy) = −xy for all x, y ∈ I,
(iii) for all x, y ∈ I, either H(xy) = xy or H(xy) = −xy,

then I ⊆ Z(R).
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Proof. (i) Assume thatH(xy) = xy for all x, y ∈ I. Then we haveH(xy−yx) =
H(xy)−H(yx) = xy−yx for all x, y ∈ I. This implies that H([x, y])−[x, y] = 0
for all x, y ∈ I, and hence I ⊆ Z(R) by Theorem 2.1(i).

(ii) and (iii) can be proved by using similar arguments in (i). □

Using similar techniques as used in proof of above theorem, we can prove
the following:

Theorem 2.3. Let R be a semiprime ring and I a nonzero ideal of R. Suppose
that α is an endomorphism of R and H is a left α-multiplier such that α is not
the identity map on I. If one of the following conditions holds:

(i) H(xy) = yx for all x, y ∈ I,
(ii) H(xy) = −yx for all x, y ∈ I,
(iii) for all x, y ∈ I, either H(xy) = xy or H(xy) = −yx,

then I ⊆ Z(R).

As immediate consequences of the above theorems we have the following
corollaries.

Corollary 2.1. Let R be a prime ring and I a nonzero ideal of R. Suppose
that α is an endomorphism of R and H is a left α-multiplier such that α is not
the identity map on I. If one of the following conditions holds:

(i) H([x, y])− [x, y] = 0 for all x, y ∈ I,
(ii) H([x, y]) + [x, y] = 0 for all x, y ∈ I,
(iii) for all x, y ∈ I, either H([x, y])− [x, y] = 0 or H([x, y]) + [x, y] = 0,

then R is commutative.

Corollary 2.2. Let R be a prime ring and I a nonzero ideal of R. Suppose
that α is an endomorphism of R and H is a left α-multiplier such that α is not
the identity map on I. If one of the following conditions holds:

(i) H(xy) = xy for all x, y ∈ I,
(ii) H(xy) = −xy for all x, y ∈ I,
(iii) for all x, y ∈ I, either H(xy) = xy or H(xy) = −xy,

then R is commutative.

Corollary 2.3. Let R be a prime ring and I a nonzero ideal of R. Suppose
that α is an endomorphism of R and H is a left α-multiplier such that α is not
the identity map on I. If one of the following conditions holds:

(i) H(xy) = yx for all x, y ∈ I,
(ii) H(xy) = −yx for all x, y ∈ I,
(iii) for all x, y ∈ I, either H(xy) = yx or H(xy) = −yx,

then R is commutative.

The following theorem is motivated by [4, Theorems 2.3 and 2.4].
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Theorem 2.4. Let R be a semiprime ring and I a nonzero ideal of R. Suppose
that α is an endomorphism of R and H is a left α-multiplier such that α is not
the identity map on I. If one of the following conditions holds:

(i) H(x ◦ y)− x ◦ y = 0 for all x, y ∈ I,
(ii) H(x ◦ y) + x ◦ y = 0 for all x, y ∈ I,
(iii) for all x, y ∈ I, either H(x ◦ y)− x ◦ y = 0 or H(x ◦ y) + x ◦ y = 0,

then I ⊆ Z(R).

Proof. (i) By the assumption, we have

(2.7) H(x ◦ y) = x ◦ y for all x, y ∈ I.

If H = 0, then x ◦ y = 0 for all x, y ∈ I. Replacing y by yz, we obtain
0 = x ◦ (yz) = y(x ◦ z) + [x, y]z = [x, y]z for all x, y, z ∈ I. It follows that
[x, y]I = {0} for all x, y ∈ I, and hence [x, y] ∈ l(I)

∩
I = {0}. Using the same

arguments as used in the beginning of Theorem 2.1(i), we get I ⊆ Z(R).
Hence, onward we assume that H ̸= 0. Replacing y by yx in (2.7) we get

H(x◦(yx)) = x◦(yx), which implies that H((x◦y)x) = (x◦y)x for all x, y ∈ I.
This can be rewritten as H(x ◦ y)α(x) = (x ◦ y)x for all x, y ∈ I. Application
of (2.7) yields that

(2.8) (x ◦ y)(α(x)− x) = 0 for all x, y ∈ I.

Replacing y by yz in (2.8) we have (y(x ◦ z) + [x, y]z)(α(x) − x) = 0 for all
x, y, z ∈ I. This reduces to

(2.9) [x, y]z(α(x)− x) = 0 for all x, y, z ∈ I.

Thus, the equation (2.9) is same as (2.4) and henceforth the proof follows by
the last paragraph of the proof of Theorem 2.1.

(ii) and (iii) can be proved by using the same technique as used in Theorem
2.1(ii) and (iii). □
Theorem 2.5. Let R be a semiprime ring and I a nonzero ideal of R. Suppose
that α is an endomorphism of R and H is a left α-multiplier such that α is not
the identity map on I. If one of the following conditions holds:

(i) H(x2) = x2 for all x ∈ I,
(ii) H(x2) = −x2 for all x ∈ I,

then I ⊆ Z(R).

Proof. (i) We are given that H(x2) = x2 for all x ∈ I. For all x, y ∈ I, we have
H((x+ y)2) = (x+ y)2, which implies that H(x ◦ y) = x ◦ y. Hence I ⊆ Z(R)
by Theorem 2.4(i).

Using similar arguments (ii) can be proved. □
Corollary 2.4. Let R be a prime ring and I a nonzero ideal of R. Suppose
that α is an endomorphism of R and H is a left α-multiplier such that α is not
the identity map on I. If one of the following conditions holds:

(i) H(x ◦ y)− x ◦ y = 0 for all x, y ∈ I,
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(ii) H(x ◦ y) + x ◦ y = 0 for all x, y ∈ I,
(iii) for all x, y ∈ I, either H(x ◦ y)− x ◦ y = 0 or H(x ◦ y) + x ◦ y = 0,

then R is commutative.

Corollary 2.5. Let R be a prime ring and I a nonzero ideal of R. Suppose
that α is an endomorphism of R and H is a left α-multiplier such that α is not
the identity map on I. If one of the following conditions holds:

(i) H(x2) = x2 for all x ∈ I,
(ii) H(x2) = −x2 for all x ∈ I,

then R is commutative.

The following example shows that the above results are not true in the case
of arbitrary rings.

Example 2.1. Suppose that S is any ring. Next, let R=
{(

0 a b
0 0 c
0 0 0

)
|a, b, c ∈ S

}
and I=

{(
0 a b
0 0 0
0 0 0

)
|a, b ∈ S

}
be an ideal of R. Define maps H,α : R −→ R such

that H
(

0 a b
0 0 c
0 0 0

)
=

(
0 0 −c
0 0 0
0 0 0

)
and α

(
0 a b
0 0 c
0 0 0

)
=
(

0 −a b
0 0 −c
0 0 0

)
. Then, it is straightfor-

ward to see thatH is a left α-multiplier of R, and satisfies: (i)H([x, y])−[x, y] =
0, (ii) H([x, y]) + [x, y] = 0, (iii) H(x ◦ y) − x ◦ y = 0, (iv) H(x ◦ y) + x ◦ y =
0, (v) H(xy) = xy, (vi) H(xy) = yx, (vii) H(x2) = x2, (viii) H(x2) = −x2 for
all x, y ∈ I, however, I ̸⊆ Z(R).

Remark 2.1. In a 2-torsion-free semiprime ring, the above results are also true
for Jordan left α-multiplier since every Jordan left α-multiplier is a left α-
multiplier [2, Theorem 2.2].

Remark 2.2. Replacing the ideal I by a square closed Lie ideal U in above
Theorems 2.1 and 2.5, it is interesting to find additional conditions such that
U ⊆ Z(R).
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