Browse > Article
http://dx.doi.org/10.4134/CKMS.2012.27.1.069

ON LEFT α-MULTIPLIERS AND COMMUTATIVITY OF SEMIPRIME RINGS  

Ali, Shakir (Department of Mathematics Aligarh Muslim University)
Huang, Shuliang (Department of Mathematics Chuzhou University)
Publication Information
Communications of the Korean Mathematical Society / v.27, no.1, 2012 , pp. 69-76 More about this Journal
Abstract
Let R be a ring, and ${\alpha}$ be an endomorphism of R. An additive mapping H : R ${\rightarrow}$ R is called a left ${\alpha}$-multiplier (centralizer) if H(xy) = H(x)${\alpha}$(y) holds for all x,y $\in$ R. In this paper, we shall investigate the commutativity of prime and semiprime rings admitting left ${\alpha}$-multiplier satisfying any one of the properties: (i) H([x,y])-[x,y] = 0, (ii) H([x,y])+[x,y] = 0, (iii) $H(x{\circ}y)-x{\circ}y=0$, (iv) $H(x{\circ}y)+x{\circ}y=0$, (v) H(xy) = xy, (vi) H(xy) = yx, (vii) $H(x^2)=x^2$, (viii) $H(x^2)=-x^2$ for all x, y in some appropriate subset of R.
Keywords
ideal; (semi)prime ring; generalized derivation; left multiplier (centralizer); left ${\alpha}$-multiplier; Jordan left ${\alpha}$-multiplier;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 E. Albash, On $\tau$-centralizers of semiprime rings, Siberian Math. J. 48 (2007), no. 2, 191-196.   DOI   ScienceOn
2 S. Ali and C. Haetinger, Jordan $\alpha$-centralizers in rings and some applications, Bol. Soc. Paran. Math. (3) 26 (2008), no. 1-2, 71-80.
3 F. W. Anderson, Lectures on noncommutative rings, Univ. of Oregon, 2002.
4 M. Ashraf and S. Ali, On left multipliers and the commutativity of prime rings, Demonstratio Math. 41 (2008), no. 4, 763-771.
5 M. Ashraf, S. Ali, and C. Haetinger, On derivations in rings and their applications, Aligarh Bull. Math. 25 (2006), no. 2, 79-107.
6 M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93.   DOI
7 W. Cortes and C. Haetinger, On Lie ideals and left Jordan $\alpha$-centralizers of 2-torsion-free rings, Math. J. Okayama Univ. 51 (2009), 111-119.
8 M. N. Daif and M. S. Tammam EL-Sayiad, On $\alpha$-centralizers of semiprime rings (II), St. Petersburg Math. J. 21 (2010), no. 1, 43-52.   DOI
9 I. N. Herstein, Rings with Involution, University of Chicago Press, Chicago 1976.
10 M. A. Quadri, M. S. Khan, and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math. 34 (2003), no. 9, 1393-1396.
11 J. Vukman and I. Kosi-Ulbl, On centralizers of semiprime rings, Aequationes Math. 66 (2003), no. 3, 277-283.   DOI   ScienceOn
12 J. Vukman and I. Kosi-Ulbl, On centralizers of semiprime rings with involution, Studia Sci. Math. Hungar. 43 (2006), no. 1, 61-67.
13 B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32(1991), no. 4, 609-614.