THE PROPERTIES OF JORDAN DERIVATIONS OF SEMIPRIME RINGS AND BANACH ALGEBRAS, II

Byung-Do Kim

> Abstract. Let A be a Banach algebra with $\operatorname{rad}(A)$. We show that if there exists a continuous linear Jordan derivation D on A, then $$
[D(x), x] D(x)^{2} \in \operatorname{rad}(A)
$$ if and only if $D(x)[D(x), x] D(x) \in \operatorname{rad}(A)$ for all $x \in A$

1. Introduction

Throughout, R represents an associative ring and A will be a complex Banach algebra. We write $[x, y]$ for the commutator $x y-y x$ for x, y in a ring. Let $\operatorname{rad}(R)$ denote the (Jacobson) radical of a ring R. And a ring R is said to be (Jacobson) semisimple if its Jacobson radical $\operatorname{rad}(R)$ is zero.

A ring R is called n-torsion free if $n x=0$ implies $x=0$. Recall that R is prime if $a R b=(0)$ implies that either $a=0$ or $b=0$, and is semiprime if $a R a=(0)$ implies $a=0$. On the other hand, let X be an element of a normed algebra. Then for every $a \in X$ the spectral radius of a, denoted by $r(a)$, is defined by $r(a)=\inf \left\{\left\|a^{n}\right\|^{\frac{1}{n}}: n \in \mathbb{N}\right\}$. It is well-known that the following theorem holds: if a is an element of a normed algebra, then $r(a)=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}$ (see Bonsall and Duncan [1]).

An additive mapping D from R to R is called a derivation if $D(x y)=$ $D(x) y+x D(y)$ holds for all $x, y \in R$. And an additive mapping D from R to R is called a Jordan derivation if $D\left(x^{2}\right)=D(x) x+x D(x)$ holds for all $x \in R$.

Johnson and Sinclair [5] have proved that any linear derivation on a semisimple Banach algebra is continuous. A result of Singer and Wermer [14] states that every continuous linear derivation on a commutative Banach algebra maps the algebra into its radical. From these two results, we can conclude that there are no nonzero linear derivations on a commutative semisimple Banach algebra. Thomas [15] has proved that any linear derivation on a commutative Banach algebra maps the algebra into its radical.

Received June 13, 2018; Accepted November 13, 2018.
2010 Mathematics Subject Classification. 16N60, 16W25, 17B40.
Key words and phrases. Jordan derivation, derivation, semiprime ring, Banach algebra, the (Jacobson) radical.

Vukman [16] has proved the following: Let R be a 2 -torsion free prime ring. If $D: R \longrightarrow R$ is a derivation such that $[D(x), x] D(x)=0$ for all $x \in R$, then $D=0$.

Moreover, using the above result, he has proved that the following holds: Let A be a noncommutative semisimple Banach algebra. Suppose that

$$
[D(x), x] D(x)=0
$$

holds for all $x \in A$. In this case, $D=0$.
In this paper, our first aim is to prove the following result in the ring theory in order to apply it to the Banach algebra theory:

Let R be a 3!-torsion free semiprime ring, and let $D: R \rightarrow R$ be a Jordan derivation on a semiprime ring R. In this case, we show that $[D(x), x] D(x)=0$ if and only if $D(x)[D(x), x]=0$ for every $x \in R$. In particular, let A be a noncommutative Banach algebra with $\operatorname{rad}(A)$ and D is a continuous linear Jordan derivation on A, then we see that $[D(x), x] D(x) \in \operatorname{rad}(A)$ if and only if $D(x)[D(x), x] \in \operatorname{rad}(A)$ for all $x \in A$.

2. Preliminaries

The following lemma is due to Chung and Luh [4].
Lemma 2.1. Let R be an n!-torsion free ring. Suppose there exist elements $y_{1}, y_{2}, \ldots, y_{n-1}, y_{n}$ in R such that $\sum_{k=1}^{n} t^{k} y_{k}=0$ for all $t=1,2, \ldots, n$. Then we have $y_{k}=0$ for every positive integer k with $1 \leq k \leq n$.

The following theorem is due to Bres̆ar [2].
Theorem 2.2. Let R be a 2-torsion free semiprime ring and let $D: R \longrightarrow R$ be a Jordan derivation. In this case, D is a derivation.

We denote by $Q(A)$ the set of all quasinilpotent elements in a Banach algebra.

Bresar [3] has also proved the following theorem.
Theorem 2.3. Let D be a bounded derivation of a Banach algebra A. Suppose that $[D(x), x] \in Q(A)$ for every $x \in A$. Then D maps A into $\operatorname{rad}(A)$.

The following theorems and lemma are due to Kim [11].
Theorem 2.4. Let R be a 3!-torsionfree semiprime ring. Suppose there exists a Jordan derivation $D: R \longrightarrow R$ such that

$$
[[D(x), x], x] D(x)=0
$$

for all $x \in R$. Then we have $3 f(x) D(x)^{2}-D(x) f(x) D(x)=0$ for all $x \in R$.
Lemma 2.5. Let R be a 5!-torsionfree semiprime ring. Let $D: R \longrightarrow R$ be a Jordan derivation on R. And assume that

$$
g(x) D(x) y D^{2}(x) D(x)=[f(x), x] D(x) y D^{2}(x) D(x)=0
$$

for all $x, y \in R$. Then we have $g(x) D(x)=[f(x), x] D(x)=0$ for all $x \in R$.

Theorem 2.6. Let R be a 5!-torsionfree semiprime ring. Let $D: R \longrightarrow R$ be a Jordan derivation on R. In this case, it follows that

$$
[D(x), x] D(x)^{2}=0 \Leftrightarrow D(x)^{2}[D(x), x]=0
$$

for every $x \in R$.
And see $[6-10,12,13]$ for the further results.

3. Main results

We need the following notations. After this, by S_{m} we denote the set $\{k \in$ $\mathbb{N} \mid 1 \leq k \leq m\}$ where m is a positive integer. When R is a ring, we shall denote the maps $B: R \times R \longrightarrow R, f, g: R \longrightarrow R$ by $B(x, y) \equiv[D(x), y]+[D(y), x]$, $f(x) \equiv[D(x), x], g(x) \equiv[f(x), x]$ for all $x, y \in R$ respectively. And we have the basic properties:

$$
\begin{aligned}
& B(x, y)=B(y, x), B(x, y z)=B(x, y) z+y B(x, z)+D(y)[z, x]+[y, x] D(z), \\
& B(x, x)=2 f(x), B\left(x, x^{2}\right)=2(f(x) x+x f(x)), x, y, z \in R .
\end{aligned}
$$

Theorem 3.1. Let R be a 5!-torsionfree semiprime ring. Let $D: R \longrightarrow R$ be a Jordan derivation on R. In this case, we show that if $f(x) D(x)^{2}=0$, then $D(x) f(x) D(x)=0$ for all $x \in R$.

Proof. When R is commutative, it is easy to check that the statements holds. Thus it suffices to prove the case that R is noncommutative.

Assume that

$$
\begin{equation*}
[D(x), x] D(x)^{2}=f(x) D(x)^{2}=0, x \in R \tag{1}
\end{equation*}
$$

Then by (211) in the proof of Theorem 2.6, we have

$$
\begin{equation*}
g(x) D(x) y D^{2}(x) D(x)=0, x, y \in R \tag{2}
\end{equation*}
$$

And by Lemma 2.5, it follows from (2) that

$$
\begin{equation*}
g(x) D(x)=0, x \in R \tag{3}
\end{equation*}
$$

And again, by Theorem 2.4, the relation (3) yields

$$
\begin{equation*}
3 f(x) D(x)^{2}-D(x) f(x) D(x)=0, x \in R \tag{4}
\end{equation*}
$$

Then by the assumption that $f(x) D(x)^{2}=0$ for all $x \in R$, we obtain from (4)

$$
\begin{equation*}
D(x) f(x) D(x)=0, x \in R \tag{5}
\end{equation*}
$$

Theorem 3.2. Let R be a 5!-torsionfree semiprime ring. Let $D: R \longrightarrow R$ be a Jordan derivation on R. In this case, we show that if $D(x) f(x) D(x)=0$, then $f(x)^{9}=0$ for all $x \in R$.

Proof. When R is commutative, it is easy to check that the statement holds. Thus it suffices to prove the case that R is noncommutative.

Suppose

$$
\begin{equation*}
D(x)[D(x), x] D(x)=D(x) f(x) D(x)=0, x \in R . \tag{6}
\end{equation*}
$$

Replacing $x+t y$ for x in (6), we have

$$
\begin{aligned}
& D(x+t y)[D(x+t y), x+t y] D(x+t y) \\
\equiv & D(x) f(x) D(x)+t\{D(y) f(x) D(x)+D(x) B(x, y) D(x)+D(x) f(x) D(y)\} \\
(7) \quad & +t^{2} H_{1}(x, y)+t^{3} H_{2}(x, y)+t^{4} D(y) f(y) D(y)=0, x, y \in R, t \in S_{3},
\end{aligned}
$$

where H_{1} and H_{2} denote the terms satisfying the identity (7).
From (6) and (7), we obtain

$$
\begin{align*}
& t\{D(y) f(x) D(x)+D(x) B(x, y) D(x)+D(x) f(x) D(y)\} \\
& +t^{2} H_{1}(x, y)+t^{3} H_{2}(x, y)=0, x, y \in R, t \in S_{3} \tag{8}
\end{align*}
$$

Since R is 3!-torsionfree, by Lemma 2.1 the relation (8) yields
(9) $\quad D(y) f(x) D(x)+D(x) B(x, y) D(x)+D(x) f(x) D(y)=0, x, y \in R$.

Let $y=x$ in (9). Then we get

$$
\begin{align*}
0= & \{D(x) x+x D(x)\} f(x) D(x)+2 D(x)\{f(x) x+x f(x)\} D(x) \\
& +D(x) f(x)\{D(x) x+x D(x)\} \\
= & 3 D(x) x f(x) D(x)+x D(x) f(x) D(x)+3 D(x) f(x) x D(x) \\
& +D(x) f(x) D(x) x, x \in R . \tag{10}
\end{align*}
$$

From (6) and (10), we obtain

$$
\begin{equation*}
0=3 D(x) x f(x) D(x)+3 D(x) f(x) x D(x), x \in R . \tag{11}
\end{equation*}
$$

From (6) and (11), we arrive at

$$
\begin{align*}
0= & 3 D(x) x f(x) D(x)+3 D(x) f(x) x D(x) \\
= & 3 D(x) x f(x) D(x)-3 x D(x) f(x) D(x)+3 D(x) f(x) x D(x) \\
& -3 x D(x) f(x) D(x) \\
= & 3[D(x), x] f(x) D(x)+3[D(x) f(x), x] D(x) \\
= & 6 f(x)^{2} D(x)+3 D(x) g(x) D(x), x \in R . \tag{12}
\end{align*}
$$

Since R is 5 !-torsion free, (12) yields

$$
\begin{equation*}
2 f(x)^{2} D(x)+D(x) g(x) D(x)=0, x \in R . \tag{13}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
0 & =[D(x) f(x) D(x), x] \\
& =f(x)^{2} D(x)+D(x) g(x) D(x)+D(x) f(x)^{2}, x \in R . \tag{14}
\end{align*}
$$

From (13) and (14), we obtain

$$
\begin{equation*}
f(x)^{2} D(x)-D(x) f(x)^{2}=0, x \in R . \tag{15}
\end{equation*}
$$

Writing $x y$ for y in (9), we have

$$
\begin{align*}
& x D(y) f(x) D(x)+D(x) y f(x) D(x)+D(x) x B(x, y) D(x) \\
& +D(x) f(x) y D(x)+D(x)^{2}[y, x] D(x)+D(x) f(x) x D(y) \\
& +D(x) f(x) D(x) y=0, x, y \in R . \tag{16}
\end{align*}
$$

Left multiplication of (9) by x leads to
(17) $x D(y) f(x) D(x)+x D(x) B(x, y) D(x)+x D(x) f(x) D(y)=0, x, y \in R$.

From (16) and (17), we obtain

$$
\begin{aligned}
& D(x) y f(x) D(x)+f(x) B(x, y) D(x) \\
& +D(x) f(x) y D(x)+D(x)^{2}[y, x] D(x) \\
& +\left\{f(x)^{2}+D(x) g(x)\right\} D(y)+D(x) f(x) D(x) y=0, x, y \in R .
\end{aligned}
$$

From (6) and (18), we get

$$
\begin{align*}
& D(x) y f(x) D(x)+f(x) B(x, y) D(x)+D(x) f(x) y D(x) \\
& +D(x)^{2}[y, x] D(x)+\left\{f(x)^{2}+D(x) g(x)\right\} D(y)=0, x, y \in R . \tag{19}
\end{align*}
$$

Right multiplication of (19) by x leads to

$$
\begin{aligned}
& D(x) y f(x) D(x) x+f(x) B(x, y) D(x) x+D(x) f(x) y D(x) x \\
& +D(x)^{2}[y, x] D(x) x+\left\{f(x)^{2}+D(x) g(x)\right\} D(y) x=0, x, y \in R .
\end{aligned}
$$

Writing $y x$ for y in (19), we have

$$
\begin{aligned}
& D(x) y x f(x) D(x)+f(x) B(x, y) x D(x)+2 f(x) y f(x) D(x) \\
& +f(x)[y, x] D(x)^{2}+D(x) f(x) y x D(x)+D(x)^{2}[y, x] x D(x) \\
(21) \quad & +\left\{f(x)^{2}+D(x) g(x)\right\} D(y) x+\left\{f(x)^{2}+D(x) g(x)\right\} y D(x)=0, x, y \in R .
\end{aligned}
$$

From (20) and (21), we obtain
(22) $\quad-\left\{f(x)^{2}+D(x) g(x)\right\} y D(x)=0, x, y \in R$.

Let $y=x$ in (22). Then we get

$$
\begin{align*}
0= & D(x) x\left\{g(x) D(x)+f(x)^{2}\right\}+2 f(x)^{3}+D(x) f(x) x f(x) \\
& -2 f(x) x f(x) D(x)-\left\{f(x)^{2}+D(x) g(x)\right\} x D(x) \\
= & D(x) x\left\{g(x) D(x)+f(x)^{2}\right\}+2 f(x)^{3}+D(x) f(x) x f(x) \\
& -2 f(x) x f(x) D(x)-\left\{f(x)^{2}+D(x) g(x)\right\} x D(x), x \in R . \tag{23}
\end{align*}
$$

Left multiplication of (23) by $D(x) f(x)$ leads to

$$
\begin{align*}
0= & D(x) f(x) D(x) x\left\{g(x) D(x)+f(x)^{2}\right\}+2 D(x) f(x)^{4} \\
& +D(x) f(x) D(x) f(x) x f(x)-2 D(x) f(x) f(x) x f(x) D(x) \\
& -D(x) f(x)\left\{f(x)^{2}+D(x) g(x)\right\} x D(x), x \in R . \tag{24}
\end{align*}
$$

From (6) and (24), we obtain

$$
\begin{aligned}
0= & 2 D(x) f(x)^{4}-2 D(x) f(x)^{2} x f(x) D(x)-D(x) f(x)^{3} x D(x) \\
= & 2 D(x) f(x)^{4}-2 D(x) f(x)^{2} x f(x) D(x)+2 D(x) f(x)^{3} D(x) x \\
& -D(x) f(x)^{3} x D(x)+D(x) f(x)^{3} D(x) x \\
= & 2 D(x) f(x)^{4}+2 D(x) f(x)^{2}\left\{g(x) D(x)+f(x)^{2}\right\}+D(x) f(x)^{4} \\
= & 5 D(x) f(x)^{4}+5 D(x) f(x)^{2} g(x) D(x), x \in R .
\end{aligned}
$$

From (15) and (25), we have

$$
\begin{equation*}
5 D(x) f(x)^{4}+5 f(x)^{2} D(x) g(x) D(x)=0, x \in R . \tag{26}
\end{equation*}
$$

From (13), (15) and (26), we obtain

$$
\begin{align*}
0 & =5 D(x) f(x)^{4}+5 f(x)^{2}\left\{-2 f(x)^{2} D(x)\right\} \\
& =5 D(x) f(x)^{4}-10 f(x)^{2}\left\{f(x)^{2} D(x)\right\} \\
& =5 D(x) f(x)^{4}-10 f(x)^{2}\left\{D(x) f(x)^{2}\right\} \\
& =5 D(x) f(x)^{4}-10 D(x) f(x)^{4} \\
& =-5 D(x) f(x)^{4}, x \in R . \tag{27}
\end{align*}
$$

Since R is 5!-torsion free, it follows from (27) that

$$
\begin{equation*}
D(x) f(x)^{4}=0, x \in R \tag{28}
\end{equation*}
$$

From (15) and (28), we get

$$
\begin{equation*}
f(x)^{4} D(x)=f(x)^{2} D(x) f(x)^{2}=D(x) f(x)^{4}=0, x \in R . \tag{29}
\end{equation*}
$$

From (28), we obtain

$$
\begin{aligned}
0= & {\left[D(x) f(x)^{4}, x\right] } \\
= & f(x)^{5}+D(x) g(x) f(x)^{3}+D(x) f(x) g(x) f(x)^{2}+D(x) f(x)^{2} g(x) f(x) \\
& +D(x) f(x)^{3} g(x), x \in R .
\end{aligned}
$$

Left multiplication of (30) by $f(x)^{4}$ leads to

$$
\begin{aligned}
0= & f(x)^{9}+f(x)^{4} D(x) g(x) f(x)^{3}+f(x)^{4} D(x) f(x) g(x) f(x)^{2} \\
& +f(x)^{4} D(x) f(x)^{2} g(x) f(x)+f(x)^{4} D(x) f(x)^{3} g(x), x \in R .
\end{aligned}
$$

From (29) and (31), we arrive at

$$
\begin{equation*}
f(x)^{9}=0, x \in R . \tag{32}
\end{equation*}
$$

We have the following statement by applying Theorems 3.1 and 2.3 to it, and its proof is partly proved by the same arguments as in the proof of J. Vukman's theorem [17].
Theorem 3.3. Let A be a Banach algebra with $\operatorname{rad}(A)$. Let $D: A \longrightarrow A$ be a continuous linear Jordan derivation. Then we obtain that

$$
[D(x), x] D(x)^{2} \in \operatorname{rad}(A) \Longleftrightarrow D(x)[D(x), x] D(x) \in \operatorname{rad}(A)
$$

for every $x \in A$.
Proof. It suffices to prove the case that A is noncommutative. By the result of B. E. Johnson and A. M. Sinclair [5] any linear derivation on a semisimple Banach algebra is continuous. Sinclair [13] has proved that every continuous linear Jordan derivation on a Banach algebra leaves the primitive ideals of A invariant. Hence for any primitive ideal $P \subseteq A$ one can introduce a derivation $D_{P}: A / P \longrightarrow A / P$, where A / P is a prime and factor Banach algebra, by $D_{P}(\hat{x})=D(x)+P, \hat{x}=x+P$. By the assumption that $[D(x), x] D(x)^{2} \in \operatorname{rad}(A), x \in A$. we obtain $\left[D_{P}(\hat{x}), \hat{x}\right]\left(D_{P}(\hat{x})\right)^{2}=\hat{0}$ for all $\hat{x}=x+P$ and primitive ideals P of A. By (211) in the proof of Theorem 2.6, $\left[\left[D_{P}(\hat{x}), \hat{x}\right], \hat{x}\right] D_{P}(\hat{x}) \hat{y}\left(\left(D_{P}\right)^{2}(\hat{x}) D_{P}(\hat{x})=\hat{0}\right.$ for all $\hat{y} \in A / P$ and $\hat{x}=x+P$. Then by Lemma 2.5, we get $\left[\left[D_{P}(\hat{x}), \hat{x}\right], \hat{x}\right] D_{P}(\hat{x})=\hat{0}$ for all $\hat{x}=x+P$ and primitive ideals P of A. Hence from Theorem 2.6, we get $3\left[D_{P}(\hat{x}), \hat{x}\right]\left(D_{P}(\hat{x})\right)^{2}-$ $D_{P}(\hat{x})\left[D_{P}(\hat{x}), \hat{x}\right] D_{P}(\hat{x})=\hat{0}$ for all $\hat{x}=x+P$ and primitive ideals P of A. And by the assumption that $\left[D_{P}(\hat{x}), \hat{x}\right]\left(D_{P}(\hat{x})\right)^{2}=\hat{0}$ for all $\hat{x}=x+P$ and primitive ideals P of A, we arrive at $D_{P}(\hat{x})\left[D_{P}(\hat{x}), \hat{x}\right] D_{P}(\hat{x})=\hat{0}$ for all $\hat{x}=x+P$ and primitive ideals P of A. Thus we have $D(x)[D(x), x] D(x) \in P$ for all $x \in A$ and primitive ideals P of A. That is, it follows that $D(x)[D(x), x] D(x) \in \cap P=$ $\operatorname{rad}(A)$ for all $x \in A$ and primitive ideals P of A. Hence the necessity is proved.

On the other hand, assume that $D(x)[D(x), x] D(x) \in \operatorname{rad}(A)$ for all $x \in A$. Then we get $\left(D_{P}(\hat{x})\left[D_{P}(\hat{x}), \hat{x}\right] D_{P}(\hat{x})=\hat{0}\right.$ for all $\hat{x}=x+P$ and primitive ideals P of A. By Theorem 3,3 , we obtain $\left[D_{P}(\hat{x}), \hat{x}\right]^{9}=\hat{0}$ for all $x \in A$. Then by Theorem 3.3, we get $\left(r_{P}\left(\left[D_{P}(\hat{x}), \hat{x}\right]\right)^{9}=r_{P}\left(\left[D_{P}(\hat{x}), \hat{x}\right]^{9}\right)=\hat{0}\right.$ for all $x \in A$ and all primitive ideals P of A where r_{P} denotes the spectral radius in A / P. Hence we have $r_{P}\left(\left[D_{P}(\hat{x}), \hat{x}\right]\right)=\hat{0}$ for all $x \in A$ and all primitive ideals P of A. Thus by Theorem 2.3 we obtain $D_{P}(\hat{x}) \in \operatorname{rad}(A / P)=\hat{0}$ for all $x \in A$ and all primitive ideals P of A. Hence we get $D(x) \in \cap P=\operatorname{rad}(A)$ for all $x \in A$ and all primitive ideals P of A. Thus since $\operatorname{rad}(A)$ is a closed two sided ideal of A, it follows that $[D(x), x] D(x)^{2} \in[D(x), x] \operatorname{rad}(A) \subseteq \operatorname{rad}(A)$ for all $x \in A$.

As a special case of Theorem 3.3 we get the following result which characterizes commutative semisimple Banach algebras.

Corollary 3.4. Let A be a semisimple Banach algebra. Suppose

$$
[y, x][[y, x], x]][y, x]=0 \Longleftrightarrow[[y, x], x][y, x]^{2}=0
$$

for every $x, y \in A$.

References

[1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Berlin-Heidelberg-New York, 1973.
[2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1003-1006. https://doi.org/10.2307/2047580
[3] _ Derivations of noncommutative Banach algebras II, Arch. Math. 63 (1994), 56-59.
[4] L. O. Chung and J. Luh, Semiprime rings with nilpotent derivatives, Canad. Math. Bull. 24 (1981), no. 4, 415-421. https://doi.org/10.4153/CMB-1981-064-9
[5] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073. https://doi.org/10.2307/2373290
[6] B.-D. Kim, On the derivations of semiprime rings and noncommutative Banach algebras, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 1, 21-28. https://doi.org/10.1007/ s101149900020
[7] , Derivations of semiprime rings and noncommutative Banach algebras, Commun. Korean Math. Soc. 17 (2002), no. 4, 607-618. https://doi.org/10.4134/CKMS. 2002.17.4.607
[8] , Jordan derivations of semiprime rings and noncommutative Banach algebras. I, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 15 (2008), no. 2, 179-201.
[9] , Jordan derivations of semiprime rings and noncommutative Banach algebras. II, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 15 (2008), no. 3, 259-296.
[10] , Jordan derivations on prime rings and their applications in Banach algebras. I, Commun. Korean Math. Soc. 28 (2013), no. 3, 535-558. https://doi.org/10.4134/ CKMS.2013.28.3.535
[11] , The properties of Jordan derivations of semiprime rings and Banach algebras. I, Commun. Korean Math. Soc. 33 (2018), no. 1, 103-125.
[12] K.-H. Park and B.-D. Kim, On continuous linear Jordan derivations of Banach algebras, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 16 (2009), no. 2, 227-241.
[13] A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214. https://doi.org/10.2307/2036730
[14] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264. https://doi.org/10.1007/BF01362370
[15] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (2) 128 (1988), no. 3, 435-460. https://doi.org/10.2307/1971432
[16] J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glas. Mat. Ser. III 26(46) (1991), no. 1-2, 83-88.
[17] , On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992), no. 4, 877-884. https://doi.org/10.2307/2159463

Byung-Do Kim
Department of Mathematics
Gangneung-Wonju National University
Gangneung 25457, Korea
Email address: bdkim@gwnu.ac.kr

