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THE PROPERTIES OF JORDAN DERIVATIONS OF

SEMIPRIME RINGS AND BANACH ALGEBRAS, II

Byung-Do Kim

Abstract. Let A be a Banach algebra with rad(A). We show that if
there exists a continuous linear Jordan derivation D on A, then

[D(x), x]D(x)2 ∈ rad(A)

if and only if D(x)[D(x), x]D(x) ∈ rad(A) for all x ∈ A.

1. Introduction

Throughout, R represents an associative ring and A will be a complex Ba-
nach algebra. We write [x, y] for the commutator xy − yx for x, y in a ring.
Let rad(R) denote the (Jacobson) radical of a ring R. And a ring R is said to
be (Jacobson) semisimple if its Jacobson radical rad(R) is zero.

A ring R is called n-torsion free if nx = 0 implies x = 0. Recall that R
is prime if aRb = (0) implies that either a = 0 or b = 0, and is semiprime
if aRa = (0) implies a = 0. On the other hand, let X be an element of
a normed algebra. Then for every a ∈ X the spectral radius of a, denoted
by r(a), is defined by r(a) = inf{||an|| 1n : n ∈ N}. It is well-known that
the following theorem holds: if a is an element of a normed algebra, then
r(a) = limn→∞ ||an||

1
n (see Bonsall and Duncan [1]).

An additive mapping D from R to R is called a derivation if D(xy) =
D(x)y + xD(y) holds for all x, y ∈ R. And an additive mapping D from R to
R is called a Jordan derivation if D(x2) = D(x)x + xD(x) holds for all x ∈ R.

Johnson and Sinclair [5] have proved that any linear derivation on a semisim-
ple Banach algebra is continuous. A result of Singer and Wermer [14] states
that every continuous linear derivation on a commutative Banach algebra maps
the algebra into its radical. From these two results, we can conclude that there
are no nonzero linear derivations on a commutative semisimple Banach algebra.
Thomas [15] has proved that any linear derivation on a commutative Banach
algebra maps the algebra into its radical.
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Vukman [16] has proved the following: Let R be a 2-torsion free prime ring.
If D : R −→ R is a derivation such that [D(x), x]D(x) = 0 for all x ∈ R, then
D = 0.

Moreover, using the above result, he has proved that the following holds:
Let A be a noncommutative semisimple Banach algebra. Suppose that

[D(x), x]D(x) = 0

holds for all x ∈ A. In this case, D = 0.
In this paper, our first aim is to prove the following result in the ring theory

in order to apply it to the Banach algebra theory:
Let R be a 3!-torsion free semiprime ring, and let D : R → R be a Jordan

derivation on a semiprime ring R. In this case, we show that [D(x), x]D(x) = 0
if and only if D(x)[D(x), x] = 0 for every x ∈ R. In particular, let A be
a noncommutative Banach algebra with rad(A) and D is a continuous linear
Jordan derivation on A, then we see that [D(x), x]D(x) ∈ rad(A) if and only
if D(x)[D(x), x] ∈ rad(A) for all x ∈ A.

2. Preliminaries

The following lemma is due to Chung and Luh [4].

Lemma 2.1. Let R be an n!-torsion free ring. Suppose there exist elements
y1, y2, . . . , yn−1, yn in R such that

∑n
k=1 t

kyk = 0 for all t = 1, 2, . . . , n. Then
we have yk = 0 for every positive integer k with 1 ≤ k ≤ n.

The following theorem is due to Bres̆ar [2].

Theorem 2.2. Let R be a 2-torsion free semiprime ring and let D : R −→ R
be a Jordan derivation. In this case, D is a derivation.

We denote by Q(A) the set of all quasinilpotent elements in a Banach alge-
bra.

Bresar [3] has also proved the following theorem.

Theorem 2.3. Let D be a bounded derivation of a Banach algebra A. Suppose
that [D(x), x] ∈ Q(A) for every x ∈ A. Then D maps A into rad(A).

The following theorems and lemma are due to Kim [11].

Theorem 2.4. Let R be a 3!-torsionfree semiprime ring. Suppose there exists
a Jordan derivation D : R −→ R such that

[[D(x), x], x]D(x) = 0

for all x ∈ R. Then we have 3f(x)D(x)2 −D(x)f(x)D(x) = 0 for all x ∈ R.

Lemma 2.5. Let R be a 5!-torsionfree semiprime ring. Let D : R −→ R be a
Jordan derivation on R. And assume that

g(x)D(x)yD2(x)D(x) = [f(x), x]D(x)yD2(x)D(x) = 0

for all x, y ∈ R. Then we have g(x)D(x) = [f(x), x]D(x) = 0 for all x ∈ R.
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Theorem 2.6. Let R be a 5!-torsionfree semiprime ring. Let D : R −→ R be
a Jordan derivation on R. In this case, it follows that

[D(x), x]D(x)2 = 0 ⇔ D(x)2[D(x), x] = 0

for every x ∈ R.

And see [6–10,12,13] for the further results.

3. Main results

We need the following notations. After this, by Sm we denote the set {k ∈
N | 1 ≤ k ≤ m} where m is a positive integer. When R is a ring, we shall denote
the maps B : R × R −→ R, f, g : R −→ R by B(x, y) ≡ [D(x), y] + [D(y), x],
f(x) ≡ [D(x), x], g(x) ≡ [f(x), x] for all x, y ∈ R respectively. And we have
the basic properties:

B(x, y) = B(y, x), B(x, yz) = B(x, y)z + yB(x, z) + D(y)[z, x] + [y, x]D(z),

B(x, x) = 2f(x), B(x, x2) = 2(f(x)x + xf(x)), x, y, z ∈ R.

Theorem 3.1. Let R be a 5!-torsionfree semiprime ring. Let D : R −→ R be
a Jordan derivation on R. In this case, we show that if f(x)D(x)2 = 0, then
D(x)f(x)D(x) = 0 for all x ∈ R.

Proof. When R is commutative, it is easy to check that the statements holds.
Thus it suffices to prove the case that R is noncommutative.

Assume that

[D(x), x]D(x)2 = f(x)D(x)2 = 0, x ∈ R.(1)

Then by (211) in the proof of Theorem 2.6, we have

g(x)D(x)yD2(x)D(x) = 0, x, y ∈ R.(2)

And by Lemma 2.5, it follows from (2) that

g(x)D(x) = 0, x ∈ R.(3)

And again, by Theorem 2.4, the relation (3) yields

3f(x)D(x)2 −D(x)f(x)D(x) = 0, x ∈ R.(4)

Then by the assumption that f(x)D(x)2 = 0 for all x ∈ R, we obtain from (4)

D(x)f(x)D(x) = 0, x ∈ R.(5) �

Theorem 3.2. Let R be a 5!-torsionfree semiprime ring. Let D : R −→ R be
a Jordan derivation on R. In this case, we show that if D(x)f(x)D(x) = 0,
then f(x)9 = 0 for all x ∈ R.
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Proof. When R is commutative, it is easy to check that the statement holds.
Thus it suffices to prove the case that R is noncommutative.

Suppose

D(x)[D(x), x]D(x) = D(x)f(x)D(x) = 0, x ∈ R.(6)

Replacing x + ty for x in (6), we have

D(x + ty)[D(x + ty), x + ty]D(x + ty)

≡ D(x)f(x)D(x)+t{D(y)f(x)D(x)+D(x)B(x, y)D(x)+D(x)f(x)D(y)}
+ t2H1(x, y) + t3H2(x, y) + t4D(y)f(y)D(y) = 0, x, y ∈ R, t ∈ S3,(7)

where H1 and H2 denote the terms satisfying the identity (7).
From (6) and (7), we obtain

t{D(y)f(x)D(x) + D(x)B(x, y)D(x) + D(x)f(x)D(y)}
+ t2H1(x, y) + t3H2(x, y) = 0, x, y ∈ R, t ∈ S3.(8)

Since R is 3!-torsionfree, by Lemma 2.1 the relation (8) yields

D(y)f(x)D(x) + D(x)B(x, y)D(x) + D(x)f(x)D(y) = 0, x, y ∈ R.(9)

Let y = x in (9). Then we get

0 = {D(x)x + xD(x)}f(x)D(x) + 2D(x){f(x)x + xf(x)}D(x)

+ D(x)f(x){D(x)x + xD(x)}
= 3D(x)xf(x)D(x) + xD(x)f(x)D(x) + 3D(x)f(x)xD(x)

+ D(x)f(x)D(x)x, x ∈ R.(10)

From (6) and (10), we obtain

0 = 3D(x)xf(x)D(x) + 3D(x)f(x)xD(x), x ∈ R.(11)

From (6) and (11), we arrive at

0 = 3D(x)xf(x)D(x) + 3D(x)f(x)xD(x)

= 3D(x)xf(x)D(x)− 3xD(x)f(x)D(x) + 3D(x)f(x)xD(x)

− 3xD(x)f(x)D(x)

= 3[D(x), x]f(x)D(x) + 3[D(x)f(x), x]D(x)

= 6f(x)2D(x) + 3D(x)g(x)D(x), x ∈ R.(12)

Since R is 5!-torsion free, (12) yields

2f(x)2D(x) + D(x)g(x)D(x) = 0, x ∈ R.(13)

On the other hand, we have

0 = [D(x)f(x)D(x), x]

= f(x)2D(x) + D(x)g(x)D(x) + D(x)f(x)2, x ∈ R.(14)
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From (13) and (14), we obtain

f(x)2D(x)−D(x)f(x)2 = 0, x ∈ R.(15)

Writing xy for y in (9), we have

xD(y)f(x)D(x) + D(x)yf(x)D(x) + D(x)xB(x, y)D(x)

+ D(x)f(x)yD(x) + D(x)2[y, x]D(x) + D(x)f(x)xD(y)

+ D(x)f(x)D(x)y = 0, x, y ∈ R.(16)

Left multiplication of (9) by x leads to

xD(y)f(x)D(x) + xD(x)B(x, y)D(x) + xD(x)f(x)D(y) = 0, x, y ∈ R.(17)

From (16) and (17), we obtain

D(x)yf(x)D(x) + f(x)B(x, y)D(x)

+ D(x)f(x)yD(x) + D(x)2[y, x]D(x)

+ {f(x)2 + D(x)g(x)}D(y) + D(x)f(x)D(x)y = 0, x, y ∈ R.(18)

From (6) and (18), we get

D(x)yf(x)D(x) + f(x)B(x, y)D(x) + D(x)f(x)yD(x)

+ D(x)2[y, x]D(x) + {f(x)2 + D(x)g(x)}D(y) = 0, x, y ∈ R.(19)

Right multiplication of (19) by x leads to

D(x)yf(x)D(x)x + f(x)B(x, y)D(x)x + D(x)f(x)yD(x)x

+ D(x)2[y, x]D(x)x + {f(x)2 + D(x)g(x)}D(y)x = 0, x, y ∈ R.(20)

Writing yx for y in (19), we have

D(x)yxf(x)D(x) + f(x)B(x, y)xD(x) + 2f(x)yf(x)D(x)

+ f(x)[y, x]D(x)2 + D(x)f(x)yxD(x) + D(x)2[y, x]xD(x)

+ {f(x)2+D(x)g(x)}D(y)x+{f(x)2+D(x)g(x)}yD(x) = 0, x, y ∈ R.(21)

From (20) and (21), we obtain

D(x)y{g(x)D(x) + f(x)2}+ f(x)B(x, y)f(x) + D(x)f(x)yf(x)

− 2f(x)yf(x)D(x)− f(x)[y, x]D(x)2 + D(x)2[y, x]f(x)

− {f(x)2 + D(x)g(x)}yD(x) = 0, x, y ∈ R.(22)

Let y = x in (22). Then we get

0 = D(x)x{g(x)D(x) + f(x)2}+ 2f(x)3 + D(x)f(x)xf(x)

− 2f(x)xf(x)D(x)− {f(x)2 + D(x)g(x)}xD(x)

= D(x)x{g(x)D(x) + f(x)2}+ 2f(x)3 + D(x)f(x)xf(x)

− 2f(x)xf(x)D(x)− {f(x)2 + D(x)g(x)}xD(x), x ∈ R.(23)
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Left multiplication of (23) by D(x)f(x) leads to

0 = D(x)f(x)D(x)x{g(x)D(x) + f(x)2}+ 2D(x)f(x)4

+ D(x)f(x)D(x)f(x)xf(x)− 2D(x)f(x)f(x)xf(x)D(x)

−D(x)f(x){f(x)2 + D(x)g(x)}xD(x), x ∈ R.(24)

From (6) and (24), we obtain

0 = 2D(x)f(x)4 − 2D(x)f(x)2xf(x)D(x)−D(x)f(x)3xD(x)

= 2D(x)f(x)4 − 2D(x)f(x)2xf(x)D(x) + 2D(x)f(x)3D(x)x

−D(x)f(x)3xD(x) + D(x)f(x)3D(x)x

= 2D(x)f(x)4 + 2D(x)f(x)2{g(x)D(x) + f(x)2}+ D(x)f(x)4

= 5D(x)f(x)4 + 5D(x)f(x)2g(x)D(x), x ∈ R.(25)

From (15) and (25), we have

5D(x)f(x)4 + 5f(x)2D(x)g(x)D(x) = 0, x ∈ R.(26)

From (13), (15) and (26), we obtain

0 = 5D(x)f(x)4 + 5f(x)2{−2f(x)2D(x)}
= 5D(x)f(x)4 − 10f(x)2{f(x)2D(x)}
= 5D(x)f(x)4 − 10f(x)2{D(x)f(x)2}
= 5D(x)f(x)4 − 10D(x)f(x)4

= −5D(x)f(x)4, x ∈ R.(27)

Since R is 5!-torsion free, it follows from (27) that

D(x)f(x)4 = 0, x ∈ R.(28)

From (15) and (28), we get

f(x)4D(x) = f(x)2D(x)f(x)2 = D(x)f(x)4 = 0, x ∈ R.(29)

From (28), we obtain

0 = [D(x)f(x)4, x]

= f(x)5 + D(x)g(x)f(x)3 + D(x)f(x)g(x)f(x)2 + D(x)f(x)2g(x)f(x)

+ D(x)f(x)3g(x), x ∈ R.(30)

Left multiplication of (30) by f(x)4 leads to

0 = f(x)9 + f(x)4D(x)g(x)f(x)3 + f(x)4D(x)f(x)g(x)f(x)2

+ f(x)4D(x)f(x)2g(x)f(x) + f(x)4D(x)f(x)3g(x), x ∈ R.(31)

From (29) and (31), we arrive at

f(x)9 = 0, x ∈ R.(32) �
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We have the following statement by applying Theorems 3.1 and 2.3 to it,
and its proof is partly proved by the same arguments as in the proof of J.
Vukman’s theorem [17].

Theorem 3.3. Let A be a Banach algebra with rad(A). Let D : A −→ A be a
continuous linear Jordan derivation. Then we obtain that

[D(x), x]D(x)2 ∈ rad(A) ⇐⇒ D(x)[D(x), x]D(x) ∈ rad(A)

for every x ∈ A.

Proof. It suffices to prove the case that A is noncommutative. By the result
of B. E. Johnson and A. M. Sinclair [5] any linear derivation on a semisim-
ple Banach algebra is continuous. Sinclair [13] has proved that every con-
tinuous linear Jordan derivation on a Banach algebra leaves the primitive
ideals of A invariant. Hence for any primitive ideal P ⊆ A one can intro-
duce a derivation DP : A/P −→ A/P , where A/P is a prime and factor
Banach algebra, by DP (x̂) = D(x) + P , x̂ = x + P . By the assumption that

[D(x), x]D(x)2 ∈ rad(A), x ∈ A. we obtain [DP (x̂), x̂](DP (x̂))2 = 0̂ for all
x̂ = x + P and primitive ideals P of A. By (211) in the proof of Theorem 2.6,

[[DP (x̂), x̂], x̂]DP (x̂)ŷ((DP )2(x̂)DP (x̂) = 0̂ for all ŷ ∈ A/P and x̂ = x + P .

Then by Lemma 2.5, we get [[DP (x̂), x̂], x̂]DP (x̂) = 0̂ for all x̂ = x + P and
primitive ideals P of A. Hence from Theorem 2.6, we get 3[DP (x̂), x̂](DP (x̂))2−
DP (x̂)[DP (x̂), x̂]DP (x̂) = 0̂ for all x̂ = x+P and primitive ideals P of A. And

by the assumption that [DP (x̂), x̂](DP (x̂))2 = 0̂ for all x̂ = x+P and primitive

ideals P of A, we arrive at DP (x̂)[DP (x̂), x̂]DP (x̂) = 0̂ for all x̂ = x + P and
primitive ideals P of A. Thus we have D(x)[D(x), x]D(x) ∈ P for all x ∈ A
and primitive ideals P of A. That is, it follows that D(x)[D(x), x]D(x) ∈ ∩P =
rad(A) for all x ∈ A and primitive ideals P of A. Hence the necessity is proved.

On the other hand, assume that D(x)[D(x), x]D(x) ∈ rad(A) for all x ∈ A.

Then we get (DP (x̂)[DP (x̂), x̂]DP (x̂) = 0̂ for all x̂ = x+P and primitive ideals

P of A. By Theorem 3,3, we obtain [DP (x̂), x̂]9 = 0̂ for all x ∈ A. Then

by Theorem 3.3, we get (rP ([DP (x̂), x̂])9 = rP ([DP (x̂), x̂]9) = 0̂ for all x ∈ A
and all primitive ideals P of A where rP denotes the spectral radius in A/P .

Hence we have rP ([DP (x̂), x̂]) = 0̂ for all x ∈ A and all primitive ideals P of A.

Thus by Theorem 2.3 we obtain DP (x̂) ∈ rad(A/P ) = 0̂ for all x ∈ A and all
primitive ideals P of A. Hence we get D(x) ∈ ∩P = rad(A) for all x ∈ A and
all primitive ideals P of A. Thus since rad(A) is a closed two sided ideal of A,
it follows that [D(x), x]D(x)2 ∈ [D(x), x]rad(A) ⊆ rad(A) for all x ∈ A. �

As a special case of Theorem 3.3 we get the following result which charac-
terizes commutative semisimple Banach algebras.

Corollary 3.4. Let A be a semisimple Banach algebra. Suppose

[y, x][[y, x], x]][y, x] = 0 ⇐⇒ [[y, x], x][y, x]2 = 0

for every x, y ∈ A.
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[2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988),
no. 4, 1003–1006. https://doi.org/10.2307/2047580

[3] , Derivations of noncommutative Banach algebras II, Arch. Math. 63 (1994),

56–59.
[4] L. O. Chung and J. Luh, Semiprime rings with nilpotent derivatives, Canad. Math. Bull.

24 (1981), no. 4, 415–421. https://doi.org/10.4153/CMB-1981-064-9

[5] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky,
Amer. J. Math. 90 (1968), 1067–1073. https://doi.org/10.2307/2373290

[6] B.-D. Kim, On the derivations of semiprime rings and noncommutative Banach alge-

bras, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 1, 21–28. https://doi.org/10.1007/
s101149900020

[7] , Derivations of semiprime rings and noncommutative Banach algebras, Com-
mun. Korean Math. Soc. 17 (2002), no. 4, 607–618. https://doi.org/10.4134/CKMS.

2002.17.4.607

[8] , Jordan derivations of semiprime rings and noncommutative Banach algebras.
I, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 15 (2008), no. 2, 179–201.

[9] , Jordan derivations of semiprime rings and noncommutative Banach algebras.

II, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 15 (2008), no. 3, 259–296.
[10] , Jordan derivations on prime rings and their applications in Banach algebras.

I, Commun. Korean Math. Soc. 28 (2013), no. 3, 535–558. https://doi.org/10.4134/

CKMS.2013.28.3.535

[11] , The properties of Jordan derivations of semiprime rings and Banach algebras.

I, Commun. Korean Math. Soc. 33 (2018), no. 1, 103–125.
[12] K.-H. Park and B.-D. Kim, On continuous linear Jordan derivations of Banach algebras,

J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 16 (2009), no. 2, 227–241.

[13] A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras,
Proc. Amer. Math. Soc. 24 (1970), 209–214. https://doi.org/10.2307/2036730

[14] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann.

129 (1955), 260–264. https://doi.org/10.1007/BF01362370
[15] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (2)

128 (1988), no. 3, 435–460. https://doi.org/10.2307/1971432

[16] J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glas.
Mat. Ser. III 26(46) (1991), no. 1-2, 83–88.

[17] , On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc.

116 (1992), no. 4, 877–884. https://doi.org/10.2307/2159463

Byung-Do Kim

Department of Mathematics

Gangneung-Wonju National University
Gangneung 25457, Korea

Email address: bdkim@gwnu.ac.kr

https://doi.org/10.2307/2047580
https://doi.org/10.4153/CMB-1981-064-9
https://doi.org/10.2307/2373290
https://doi.org/10.1007/s101149900020
https://doi.org/10.1007/s101149900020
https://doi.org/10.4134/CKMS.2002.17.4.607
https://doi.org/10.4134/CKMS.2002.17.4.607
https://doi.org/10.4134/CKMS.2013.28.3.535
https://doi.org/10.4134/CKMS.2013.28.3.535
https://doi.org/10.2307/2036730
https://doi.org/10.1007/BF01362370
https://doi.org/10.2307/1971432
https://doi.org/10.2307/2159463

