• Title/Summary/Keyword: Semiconductor Packaging

Search Result 272, Processing Time 0.026 seconds

Development of Nipkow Disk for High-Speed Confocal Probe Using Micro-lens and Pinhole Disks (마이크로 렌즈 디스크와 핀홀 디스크를 이용한 고속 공초점용 닙코 디스크 개발)

  • Kim, Gee Hong;Lee, Hyung Seok;Kim, Chang Kyu;Lim, Hyung Jun;Lee, Jae Jong;Choi, Kee Bong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.636-641
    • /
    • 2014
  • This paper discusses the fabrication process for a Nipkow disk using micro-lens and pinhole disks. The confocal measuring system that uses the Nipkow disk has the advantage in measuring speed, because the Nipkow disk can simultaneously provide confocal images of all pixels in a CCD camera without requiring a lateral scanning unit. A micro-lens configuration, which focuses illumination on a pinhole, overcomes the low optical efficiency of the Nipkow disk system and allows its use in practical applications. This paper describes how to design the Nipkow disk in terms of numerical aperture, particularly for measuring the height of solder bumps in packaging application and for hybrid processes combining mechanical and semiconductor processes.

Electrostatic bonding between Si and ITO-coated #7059 glass substrates (실리콘 기판과 ITO가 코팅된 #7059 유리 기판간의 정전 열 접합)

  • Ju, Hyeong-Kwon;Chung, Hoi-Hwan;Kim, Young-Cho;Han, Jeong-In;Cho, Kyoung-Ik;Oh, Myung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.211-217
    • /
    • 1998
  • Si and ITO-coated #7059 glass wafers were electrostatically bonded by employing #7740 interlayer. It was inferred that the thermionic- electrostatic migration of $Na^{+}$ ions in the #7740 interlayer played an important role in the bonding process through SIMS analysis. The temperature and voltage required for reliable electrostatic bonding were in the range of $180{\sim}200^{\circ}C$ and $50{\sim}70V_{dc}$(10min), respectively. The low temperature Si-ITO coated glass bonding can be effectively applied to the packaging of field emission devices.

  • PDF

Fabrication and characteristics of MOSFET protein sensor using gold-black gate (Gold-Black 게이트를 이용한 MOSFET형 단백질 센서의 제조 및 특성)

  • Kim, Min-Suk;Park, Keun-Yong;Kim, Ki-Soo;Kim, Hong-Seok;Bae, Young-Seuk;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.137-143
    • /
    • 2005
  • Research in the field of biosensor has enormously increased over the recent years. The metal-oxide semiconductor field effect transistor (MOSFET) type protein sensor offers a lot of potential advantages such as small size and weight, the possibility of automatic packaging at wafer level, on-chip integration of biosensor arrays, and the label-free molecular detection. We fabricated MOSFET protein sensor and proposed the gold-black electrode as the gate metal to improve the response. The experimental results showed that the output voltage of MOSFET protein sensor was varied by concentration of albumin proteins and the gold-black gate increased the response up to maximum 13 % because it has the larger surface area than that of planar-gold gate. It means that the expanded gate allows a larger number of ligands on same area, and makes the more albumin proteins adsorbed on gate receptor.

Reliable design and electrical characteristics of vertical MEMS probe tip (수직형 MEMS 프로브 팁의 신뢰성 설계 및 전기적 특성평가)

  • Lee, Seung-Hun;Chu, Sung-Il;Kim, Jin-Hyuk;Han, Dong-Chul;Moon, Sung
    • Journal of Applied Reliability
    • /
    • v.7 no.1
    • /
    • pp.23-29
    • /
    • 2007
  • Probe card is a test component which is to classify the known good die with electrical contact before the packaging in the ATE (automatic testing equipment). Conventional probe tip was mostly needle type, it has been difficult to meet with conventional type, because of decreasing chip size, pad to pad pitch and pads size increasingly. For that reason, probe cards using MEMS (micro electro mechanical system) technology have been developed for various semiconductor chips. In this paper, Area Array type MEMS Probe tip was designed,, fabricated, and characterized its mechanical and electrical properties. The authors found that good electrical characteristics under $1{\Omega}$ were acquired with gold (Au) and aluminium (Al) pad contact test over 0.5gf and 4gf respectively. And, contact resistance variation under $0.1{\Omega}$ were achieved with 100,000 times of repetition test. And, insertion loss (IS) for high frequency operation was ascertained over 300MHz at -3dB loss.

  • PDF

Evaluation of Dicing Characteristics of Diamond Micro-blades with Cu/Sn Binder Including Etched WS2 Particles (표면 부식 처리한 WS2 입자를 첨가한 Cu/Sn계 다이아몬드 마이크로 블레이드의 절삭특성)

  • Kim, Song-Hee;Jang, Jaecheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • $WS_2$ particles were added to micro-diamond blades with Cu/Sn binding metal as lubricants to improve cutting efficiency. It was found in previous works that the added $WS_2$ lubricant could reduce remarkably the momentary energy consumption during dicing tests but increased wear rate slightly owing to weak bonding between lubricant particles and bond metals. In the present work, the surface of $WS_2$ lubricant particles were etched for activating the surface of $WS_2$ particles that provide even distribution of particles during powder mixing process and improvement of wetting at the interfaces between $WS_2$ particles and molten Cu/Sn bond metals during pressurized sintering so that could provide the improved strength of micro-blades and result in extended life. Chipping behavior of workpiece with the types of micro-blades including $WS_2$ were compared because it is important in semiconductor and micro-packaging industries to control average roughness and straightness of sliced surface which is closely related with quality.

Optimization of Material and Process for Fine Pitch LVSoP Technology

  • Eom, Yong-Sung;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong;Choi, Heung-Soap
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.625-631
    • /
    • 2013
  • For the formation of solder bumps with a fine pitch of 130 ${\mu}m$ on a printed circuit board substrate, low-volume solder on pad (LVSoP) technology using a maskless method is developed for SAC305 solder with a high melting temperature of $220^{\circ}C$. The solder bump maker (SBM) paste and its process are quantitatively optimized to obtain a uniform solder bump height, which is almost equal to the height of the solder resist. For an understanding of chemorheological phenomena of SBM paste, differential scanning calorimetry, viscosity measurement, and physical flowing of SBM paste are precisely characterized and observed during LVSoP processing. The average height of the solder bumps and their maximum and minimum values are 14.7 ${\mu}m$, 18.3 ${\mu}m$, and 12.0 ${\mu}m$, respectively. It is expected that maskless LVSoP technology can be effectively used for a fine-pitch interconnection of a Cu pillar in the semiconductor packaging field.

Corrosion Protection of Plasma-Polymerized Cyclohexane Films Deposited on Copper

  • Park, Z.T.;Lee, J.H.;Choi, Y.S.;Ahn, S.H.;Kim, J.G.;Cho, S.H.;Boo, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.74-78
    • /
    • 2003
  • The corrosion failure of electronic devices has been a major reliability concern lately. This failure is an ongoing concern because of miniaturization of integrated circuits (IC) and the increased use of polymers in electronic packaging. Recently, plasma-polymerized cyclohexane films were considered as a possible candidate for a interlayer dielectric for multilever metallization of ultra large scale integrated (ULSI) semiconductor devices. In this paper the protective ability of above films as a function of deposition temperature and RF power in an 3.5 wt.% NaCl solution were examined by polarization measurement. The film was characterized by FTIR spectroscopy and contact angle measurement. The protective efficiency of the film increased with increasing deposition temperature and RF power, which induced the higher degree of cross-linking and hydrophobicity of the films.

A Study on the Solution of Product Particle Attachment Problem using Practical TRIZ (실용 트리즈를 활용한 제품 Particle 부착 문제의 해결 방안 연구)

  • Kyu-Han Jeong;In-Kwang Song;Jang-Hee Lee
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.209-221
    • /
    • 2023
  • In the external inspection and packaging stages of products used in the semiconductor manufacturing process, there is a problem in which particles are adsorbed to the product itself or a carrying tool due to electrostatic discharge. This study presents a methodology that can improve the problem of adsorption of particles to a product by using a practical TRIZ technique. By applying the proposed practical TRIZ-based methodology, the problem was defined, and contradictions caused by product waiting time were derived. Among the derived contradictions, physical contradictions were set and the concept of 'space separation' was applied to derive solutions such as 'installation of Ionizer' and 'improvement of the layout of the workroom'. As a result of the experiment by applying 'Ionizer Installation' and 'Workroom Layout Improvement' derived through the application of practical TRIZ, it was confirmed that the particle adsorption problem that occurs during the waiting time of the product can be solved.Through this study, it is expected that workers, facility engineers, and technical engineers working at manufacturing processes will be able to effectively solve the problems they face through creative thinking and change of ideas by using practical TRIZ techniques, and contribute to innovative technology development and productivity improvement.

Numerical Study of Warpage and Stress for the Ultra Thin Package (수치해석에 의한 초박형 패키지의 휨 현상 및 응력 특성에 관한 연구)

  • Song, Cha-Gyu;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.49-60
    • /
    • 2010
  • Semiconductor packages are increasingly moving toward miniaturization, lighter and high performance. Futhermore, packages become thinner. Thin packages will generate serious reliability problems such as warpage, crack and other failures. Reliability problems are mainly caused by the CTE mismatch of various package materials. Therefore, proper selection of the package materials and geometrical optimization is very important for controlling the warpage and the stress of the package. In this study, we investigated the characteristics of the warpage and the stress of several packages currently used in mobile devices such as CABGA, fcSCP, SCSP, and MCP. Warpage and stress distribution are analyzed by the finite element simulation. Key material properties which affect the warpage of package are investigated such as the elastic moduli, CTEs of EMC molding and the substrate. Geometrical effects are also investigated including the thickness or size of EMC molding, silicon die and substrate. The simulation results indicate that the most influential factors on warpage are EMC molding thickness, CTE of EMC, elastic modulus of the substrate. Simulation results show that warpage is the largest for SCSP. In order to reduce the warpage, DOE optimization is performed, and the optimization results show that warpage of SCSP becomes $10{\mu}m$.