• Title/Summary/Keyword: Semi-Systolic Multiplier

Search Result 9, Processing Time 0.02 seconds

Efficient Semi-systolic AB2 Multiplier over Finite Fields

  • Kim, Keewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • In this paper, we propose an efficient AB2 multiplication algorithm using SPB(shifted polynomial basis) over finite fields. Using the feature of the SPB, we split the equation for AB2 multiplication into two parts. The two partitioned equations are executable at the same time, and we derive an algorithm that processes them in parallel. Then we propose an efficient semi-systolic AB2 multiplier based on the proposed algorithm. The proposed multiplier has less area-time (AT) complexity than related multipliers. In detail, the proposed AB2 multiplier saves about 94%, 87%, 86% and 83% of the AT complexity of the multipliers of Wei, Wang-Guo, Kim-Lee, Choi-Lee, respectively. Therefore, the proposed multiplier is suitable for VLSI implementation and can be easily adopted as the basic building block for various applications.

Efficient Semi-systolic Montgomery multiplier over GF(2m)

  • Keewon, Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.69-75
    • /
    • 2023
  • Finite field arithmetic operations play an important role in a variety of applications, including modern cryptography and error correction codes. In this paper, we propose an efficient multiplication algorithm over finite fields using the Montgomery multiplication algorithm. Existing multipliers can be implemented using AND and XOR gates, but in order to reduce time and space complexity, we propose an algorithm using NAND and NOR gates. Also, based on the proposed algorithm, an efficient semi-systolic finite field multiplier with low space and low latency is proposed. The proposed multiplier has a lower area-time complexity than the existing multipliers. Compared to existing structures, the proposed multiplier over finite fields reduces space-time complexity by about 71%, 66%, and 33% compared to the multipliers of Chiou et al., Huang et al., and Kim-Jeon. As a result, our multiplier is proper for VLSI and can be successfully implemented as an essential module for various applications.

Type II Optimal Normal Basis Multipliers in GF(2n) (타입 II 최적 정규기저를 갖는 GF(2n)의 곱셈기)

  • Kim, Chang Han;Chang, Nam Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.979-984
    • /
    • 2015
  • In this paper, we proposed a Semi-Systolic multiplier of $GF(2^n)$ with Type II optimal Normal Basis. Comparing the complexity of the proposed multiplier with Chiou's multiplier proposed in 2012, it is saved $2n^2+44n+26$ in total transistor numbers and decrease 4 clocks in time delay. This means that, for $GF(2^{333})$ of the field recommended by NIST for ECDSA, the space complexity is 6.4% less and the time complexity of the 2% decrease. In addition, this structure has an advantage as applied to Chiou's method of concurrent error detection and correction in multiplication of $GF(2^n)$.

Low Complexity Systolic Montgomery Multiplication over Finite Fields GF(2m) (유한체상의 낮은 복잡도를 갖는 시스톨릭 몽고메리 곱셈)

  • Lee, Keonjik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Galois field arithmetic is important in error correcting codes and public-key cryptography schemes. Hardware realization of these schemes requires an efficient implementation of Galois field arithmetic operations. Multiplication is the main finite field operation and designing efficient multiplier can clearly affect the performance of compute-intensive applications. Diverse algorithms and hardware architectures are presented in the literature for hardware realization of Galois field multiplication to acquire a reduction in time and area. This paper presents a low complexity semi-systolic multiplier to facilitate parallel processing by partitioning Montgomery modular multiplication (MMM) into two independent and identical units and two-level systolic computation scheme. Analytical results indicate that the proposed multiplier achieves lower area-time (AT) complexity compared to related multipliers. Moreover, the proposed method has regularity, concurrency, and modularity, and thus is well suited for VLSI implementation. It can be applied as a core circuit for multiplication and division/exponentiation.

An Efficient Multiplexer-based AB2 Multiplier Using Redundant Basis over Finite Fields

  • Kim, Keewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • In this paper, we propose a multiplexer based scheme that performs modular AB2 multiplication using redundant basis over finite field. Then we propose an efficient multiplexer based semi-systolic AB2 multiplier using proposed scheme. We derive a method that allows the multiplexers to perform the operations in the cell of the modular AB2 multiplier. The cell of the multiplier is implemented using multiplexers to reduce cell latency. As compared to the existing related structures, the proposed AB2 multiplier saves about 80.9%, 61.8%, 61.8%, and 9.5% AT complexity of the multipliers of Liu et al., Lee et al., Ting et al., and Kim-Kim, respectively. Therefore, the proposed multiplier is well suited for VLSI implementation and can be easily applied to various applications.

Resource and Delay Efficient Polynomial Multiplier over Finite Fields GF (2m) (유한체상의 자원과 시간에 효율적인 다항식 곱셈기)

  • Lee, Keonjik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Many cryptographic and error control coding algorithms rely on finite field GF(2m) arithmetic. Hardware implementation of these algorithms needs an efficient realization of finite field arithmetic operations. Finite field multiplication is complicated among the basic operations, and it is employed in field exponentiation and division operations. Various algorithms and architectures are proposed in the literature for hardware implementation of finite field multiplication to achieve a reduction in area and delay. In this paper, a low area and delay efficient semi-systolic multiplier over finite fields GF(2m) using the modified Montgomery modular multiplication (MMM) is presented. The least significant bit (LSB)-first multiplication and two-level parallel computing scheme are considered to improve the cell delay, latency, and area-time (AT) complexity. The proposed method has the features of regularity, modularity, and unidirectional data flow and offers a considerable improvement in AT complexity compared with related multipliers. The proposed multiplier can be used as a kernel circuit for exponentiation/division and multiplication.

Multiplexer-Based Finite Field Multiplier Using Redundant Basis (여분 기저를 이용한 멀티플렉서 기반의 유한체 곱셈기)

  • Kim, Kee-Won
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.313-319
    • /
    • 2019
  • Finite field operations have played an important role in error correcting codes and cryptosystems. Recently, the necessity of efficient computation processing is increasing for security in cyber physics systems. Therefore, efficient implementation of finite field arithmetics is more urgently needed. These operations include addition, multiplication, division and inversion. Addition is very simple and can be implemented with XOR operation. The others are somewhat more complicated than addition. Among these operations, multiplication is the most important, since time-consuming operations, such as exponentiation, division, and computing multiplicative inverse, can be performed through iterative multiplications. In this paper, we propose a multiplexer based parallel computation algorithm that performs Montgomery multiplication over finite field using redundant basis. Then we propose an efficient multiplexer based semi-systolic multiplier over finite field using redundant basis. The proposed multiplier has less area-time (AT) complexity than related multipliers. In detail, the AT complexity of the proposed multiplier is improved by approximately 19% and 65% compared to the multipliers of Kim-Han and Choi-Lee, respectively. Therefore, our multiplier is suitable for VLSI implementation and can be easily applied as the basic building block for various applications.

Design of Montgomery Algorithm and Hardware Architecture over Finite Fields (유한 체상의 몽고메리 알고리즘 및 하드웨어 구조 설계)

  • Kim, Kee-Won;Jeon, Jun-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.41-46
    • /
    • 2013
  • Finite field multipliers are the basic building blocks in many applications such as error-control coding, cryptography and digital signal processing. Recently, many semi-systolic architectures have been proposed for multiplications over finite fields. Also, Montgomery multiplication algorithm is well known as an efficient arithmetic algorithm. In this paper, we induce an efficient multiplication algorithm and propose an efficient semi-systolic Montgomery multiplier based on polynomial basis. We select an ideal Montgomery factor which is suitable for parallel computation, so our architecture is divided into two parts which can be computed simultaneously. In analysis, our architecture reduces 30%~50% of time complexity compared to typical architectures.

$AB^2$ Semi-systolic Multiplier ($AB^2$ 세미시스톨릭 곱셈기)

  • 이형목;김현성;전준철;유기영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.892-894
    • /
    • 2002
  • 본 논문은 유한 체 GF(/2 sup m/)상에서 A$B^2$연산을 위해 AOP(All One Polynomial)에 기반한 새로운 MSB(Most Significant bit) 유선 알고리즘을 제시하고, 제시한 알고리즘에 기반하여 병렬 입출력 세미시스톨릭 구조를 제안한다. 제안된 구조는 표준기저(standard basis)에 기반하고 모듈라(modoular) 연산을 위해 다항식의 계수가 모두 1인 m차의 기약다항식 AOP를 사용한다. 제안된 구조에서 AND와 XOR게이트의 딜레이(deray)를 각각 /D sub AND$_2$/와/D sub XOR$_2$/라 하면 각 셀 당 임계경로는 /D sub AND$_2$+D sub XOR/이고 지연시간은 m+1이다. 제안된 구조는 기존의 구조보다 임계경로와 지연시간 면에서 보다 효율적이다. 또한 구조 자체가 정규성, 모듈성, 병렬성을 가지기 때문에 VLSI 구현에 효율적이다. 더욱이 제안된 구조는 유한 체상에서 지수 연산을 필요로 하는 Diffie-Hellman 키 교환 방식, 디지털 서명 알고리즘 및 EIGamal 암호화 방식과 같은 알고리즘을 위한 기본 구조로 사용할 수 있다. 이러한 알고리즘을 응용해서 타원 곡선(elliptic curve)에 기초한 암호화 시스템(Cryptosystem)의 구현에 사용될 수 있다.

  • PDF