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Ⅰ. Introduction
1)

Many important applications, such as digital

signal processing, cryptography, and coding theory,

are based on finite field GF(2m) arithmetic. In

particular, elliptic curve cryptography (ECC) which

needs smaller key sizes than RSA public key

* 대구대학교 자유전공학부 교수

cryptography by offering same security level

require finite field operations [1, 2]. In the finite

field, the performance of a cryptosystem is

primarily determined by an efficient implementa-

tion of the arithmetic operations, e.g., addition,

multiplication, division and exponentiation. Addition

is relatively inexpensive, whereas division and

exponentiation can be carried out using repeated
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<Abstract>

Galois field arithmetic is important in error correcting codes and public-key cryptography
schemes. Hardware realization of these schemes requires an efficient implementation of
Galois field arithmetic operations. Multiplication is the main finite field operation and
designing efficient multiplier can clearly affect the performance of compute-intensive
applications. Diverse algorithms and hardware architectures are presented in the literature
for hardware realization of Galois field multiplication to acquire a reduction in time and
area. This paper presents a low complexity semi-systolic multiplier to facilitate parallel
processing by partitioning Montgomery modular multiplication (MMM) into two independent
and identical units and two-level systolic computation scheme. Analytical results indicate that
the proposed multiplier achieves lower area-time (AT) complexity compared to related
multipliers. Moreover, the proposed method has regularity, concurrency, and modularity, and
thus is well suited for VLSI implementation. It can be applied as a core circuit for
multiplication and division/exponentiation.
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multiply and square algorithm. Therefore, efficient

multiplication architectures over GF(2m) should be

designed to implement elliptic curve cryptosystem.

The efficiency of finite field multiplications

depends on the selected basis representations for

elements in GF(2m). There are several basis

representations such as polynomial basis (PB),

normal basis, dual basis, and redundant basis. Each

basis has its own distinct advantages. Among these

basis, polynomial basis arithmetic is more simple,

regular, and scalable in hardware realization.

Furthermore, the efficiency of finite field multiplier is

dependent on the irreducible polynomial chosen.

Irreducible polynomials are categorized into generic

polynomial, equally spaced polynomial (ESP), trinomial,

and pentanomial. A 1-ESP is known as an all one

polynomial (AOP). Trinomial and pentanomial-based

multipliers are more effective, while generic

polynomial-based multipliers are suitable for a

broader range of applications. According to the

implementation method, varied multipliers can be

devised. Bit serial multipliers require a small area,

but are slow and take m clock cycles to carry out

the multiplication of two elements. Conversely, bit

parallel multipliers get the result in one clock cycle

at the expense of immoderate hardware. A systolic array

architecture has the characteristic features of regularity,

modularity, local homogeneous interconnection and

concurrency. Due to the nature of pipelining, it is

possible to use a high clock frequency under high

resource utilization.

In this paper, we propose a semi-systolic

modular multiplier array over GF(2m) to reduce the

time and area overhead by partitioning MMM into

two independent and identical parts. These two can

be processed efficiently in a pipelined manner on a

semi-systolic array. The proposed systolic array

architecture is based on the general irreducible

polynomial and can be adopted to any more

efficient types of special polynomials, i.e., trinomial

and pentanomial. We develop a parallel-

in-parallel-out systolic array by deriving the

dependence graph (DG) of the proposed MMM

algorithm and applying the cut-set systolization to

the DG array. This structure is very regular and has

local interconnections, making it very suitable for

VLSI implementations. The proposed scheme can be

used as a kernel component for both

inversion/exponentiation and multiplication.

Ⅱ. Montgomery multiplication for finite 
field

Several systolic modular multiplication algorithms

and architectures have been proposed [3-12]. Lee et

al. [3] and Chiou et al. [4] presented a semi-systolic

array multiplier with an error detection. Huang et

al. [5] proposed an efficient semi-systolic array

multiplier to decrease the time and area costs. Choi

and Lee [6] proposed new bit-parallel and bit-serial

systolic multipliers simplifying quotient

determination necessary for an exact division when

performing MMM in a prime field GF(p). The

critical operation of the integer MMM is a

three-operand addition within an iteration loop,

where addition of long integers can cause a

significant delay due to carry propagation, which

limits the clock frequency. One way of solving this

problem is to employ a systolic array. Note that



Low Complexity Systolic Montgomery Multiplication over Finite Fields GF (2m)

디지털산업정보학회 논문지 3

GF(p) arithmetic is different from the binary field

GF(2m) arithmetic because no carry computation

exists in GF(2m). Choi and Lee [7] developed highly

area-time efficient serial and parallel systolic array

for unified multiplication and squaring with little

hardware overhead. It has the feature that it computes

both multiplication and squaring concurrently for

fast modular exponentiation. The performance of this

architecture is based on the new LSB-first

multiplication and LSB-first exponentiation. Chiou et

al. [8] presented a semi-systolic array multiplier to

lessen the time complexity. Recently, Lee [9]

proposed a new resource and delay efficient

semi-systolic MMM multiplier with two-level

systolic computation and LSB-first Montgomery

multiplication. The multiplier presented by Mathe

and Boppana [10] has both serial input and parallel

input. Ibrahim [11] presented the systolic array

structure for multiplication and squaring. Recently,

Pillutla and Boppana [12] proposed a polynomial basis

GF(2m) systolic multiplier applicable for a narrow class

of trinomials which includes both the recommended

trinomials for m = 233 and 409 fields. Although

several multipliers have been developed with a

polynomial basis of GF(2m), their high hardware

complexities and long delay times are important

limitations in security applications. Thus, further

research on efficient multiplication architectures with

low area and time complexities is needed.

The development of fast algorithms and structures of

modular multiplications has received considerable

interest. The Montgomery modular multiplication

algorithm without a division operation was first

proposed by P. L. Montgomery to improve the

performance of modular integer multiplications [6,

13]. It was proved that MMM is appropriate to

GF(2m) [14]. The basic idea is to convert input values

to Montgomery residues, and compute the modular

multiplication using these residues. Finally, the

output is transformed back to the original

representation.

Let G = ∑  
 be the irreducible polynomial

generating the finite field GF(2m), where  =  = 1

and  ∈ GF(2) for 1 ≤ j ≤ m – 1. It is

conventional to represent the elements of GF(2m) as a

power of the primitive element z where z is the

root of G. The set {1, z, ..., zm–1} is referred to as the

polynomial basis. Each element in GF(2m) is a unique

linear combination consisting of polynomials of

degree less than m in GF(2). The addition is bitwise

exclusive-OR (XOR); but, the multiplication is a

little complicated since the intermediate result needs

further modular reduction by xm = ∑ 
.

Let x and y be two elements of GF(2m) to be

multiplied. Instead of computing S = xy mod G,

using a novel notation of the residue class,

Montgomery multiplication of A (= xR mod G =

∑ 
) and B (= yR mod G =∑ 

) is

computed by T = ABR–1 mod G = ∑ 
, where

A (resp., B) is the Montgomery residue of x (resp.,

y) and R is a special element satisfying gcd(R, G) =

1. The final result S is then taken by computing

MMM using inputs T and 1, i.e., S = TR–1 mod G = xy
mod G. Therefore, MMM is favourable in several

applications involving successive multiplications,

such as inversion, exponentiation, and elliptic curve

point multiplication due to the pre- and

post-transformation needs.

Note that in most practical applications, m is an

odd number. For elliptic curve cryptography (ECC),
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the National Institute of Standard and Technology

(NIST) recommends five binary fields: GF(2163),

GF(2233), GF(2283), GF(2409), and GF(2571). Of these five

fields, m = 233 and 409 are irreducible trinomials

and the others are pentanomials. In this paper, we

only consider odd values of m and we construct a

low complexity semi-systolic Montgomery

multiplier. Using R = x(m
 

–
 

1)/2, the Montgomery

multiplication T = ABR–1 mod G can be formulated

as

T = A(b0 + b1x +…+ b(m–1)/2x(m–1)/2 +…

   + bm–1xm–1)x–(m–1)/2 mod G
 = A(b0x–(m–1)/2+b1x–(m–3)/2+…+b (m–3)/2x–1)

   +A(b(m–1)/2x0+b(m+1)/2x1+…+bm–1x(m–1)/2) mod G (1)

To derive the recurrence relations for the proposed

semi-systolic MMM multiplier, (1) is represented as

the sum of two polynomials C and D as follows:

C = Abm–1x(m–1)/2 + Abm–2x(m–3)/2 +…

    + Ab(m+1)/2x1 + Ab(m–1)/2 mod G
  = (…((Abm–1)x mod G + Abm–2)x mod G +…

    + Ab(m+1)/2)x mod G + Ab(m–1)/2 (2)

D = Ab(m–3)/2x–1 + Ab(m–5)/2x–2 +…

     + Ab1x–(m–3)/2 + Ab0x–(m–1)/2 mod G
   = (…((Ab0)x–1 mod G + Ab1)x–1 mod G +…

     + Ab(m–3)/2)x–1 mod G (3)

Let Ci and Di be the results of i-th recursion of (2)

and (3), respectively, which can be computed

recursively from the results of (i – 1)-th pair of

recursions. The recursive equation of (2) at step i for

1 ≤ i ≤ (m + 1)/2 can be obtained as

Ci = Ci – 1x mod G + Abm – i, (4)

where C0 = 0.

Similar to (4), we can express (3) recursively as

Di = Di – 1x–1 mod G + Abi – 1, (5)

where D0 = b(m – 1)/2 = 0.

Note that the value b(m – 1)/2 = 0 is required in the

computation of the last D(m+1)/2. According to (4)

and (5), it is clear that there is no data

dependency in Ci and Di, so they can be

computed concurrently. With the bit-level

representation, substituting the expansion of xm on

(4), the reduced form of Ci for 1 ≤ i ≤ (m + 1)/2
can be obtained by

Ci = ci–1,m–2xm–1 +…+ ci–1,1x2 + ci–1,0x 
     + ci–1,m–1(gm–1xm–1 + … + g1x + g0) 
     + bm–i(am–1xm–1 + … + a1x + a0)
   = ci,m–1xm–1 + … + ci,1x + ci,0 (6)

Finally, C at step i can be represented in a

recursive manner as 

ci,m–1–j = ci–1,m–2–j + ci–1,m–1gm–1–j + bm–iam–1–j, (7)

where c0, j = ci–1,–1 = 0 and m – 1 ³ j ³ 0.

For any irreducible polynomial, g0 = 1 and gm =

1, and we notice that x is a root of G. Thus,

multiplying each side of G by x–1, and

reorganizing the terms, we obtain x–1 =

∑  
. Similar to (6), substituting the

expansion of x–1 on (5), Di can be rewritten as

follows:
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Di = di–1,m–1xm–2 + … + di–1,1 
     + di–1,0(gmxm–1 + … + g2x + g1)
     + bi–1(am–1xm–1 + … + a1x + a0)
   = di,m–1xm–1 + … + di,1x + di,0. (8)

The recursive equation of (8) at step i for 1 ≤ i 
≤ (m+1)/2 can be represented as 

di, j = di–1,j+1 + di–1,0gj+1 + bi–1aj, (9)

where d0, j = di–1,m = b(m–1)/2 = 0 and 0 ≤ j ≤ m – 1.

Finally, C(m+1)/2 and D(m+1)/2 should be summed up

by using m 2-input XOR gates (XOR2) to obtain T.

For simplicity of discussion, the binary field

GF(25) is used to illustrate the semi-systolic

architecture. A most significant bit (MSB)-first

semi-systolic array for the computation of C based

on (7) is shown in <Figure 1>, where m × (m +

1)/2 basic cells of <Figure 2> are used and “●”

denotes a 1-bit latch. In <Figure 2>, the cell at

position (i, j) computes (7). In Fig. 1(a), the cell at

position (i, j) receives ci–1,m–2–j from the neighbor cell

at the position (i – 1, j + 1) of the previous row

and computes ci, m–1–j.

The index points and initial locations of all inputs

are as following. First, bm–i, 1 £ i £ (m + 1)/2, enters

index (i, 0) from the left direction and flows into

the direction of [0, 1]. The values am–1–j and gm–1–j, m

– 1 ³ j ³ 0, then enter index [1, j] from the top and

flow in the direction of [1, 0], respectively. Next, c0,m–

2–j, 0 £ j £ m – 1, enters [1, j] index from the top,

and then is computed with the partial products

generated by the previous row to give new partial

products that are passed on to the next row, and

then flows in the direction of [1, –1].

The values am–1–j and gm–1–j, m – 1 ³ j ³ 0, then

enter index [1, j] from the top and flow in the

direction of [1, 0], respectively. Next, c0, m–2–j, 0 £ j £

m – 1, enters [1, j] index from the top, and is

computed with the partial products generated by

the previous row to give new partial products that

are passed on to the next row, and then flows in

the direction of [1, –1]. Then, ci–1, m–1, 1 £ i £

(m+1)/2, the MSB of Ci–1, enters index [i, 0] from

the left direction and flows into the direction of [0,

1]. The result, C(m+1)/2, is obtained from the bottom

row of the array after (m+1)/2 iterations. In <Figure

2>, the basic cell consists of two 2-input AND gates

(AND2) and one 3-input XOR gate (XOR3). The (i, j)

cell receives ci–1, m–2–j as its input from the (i – 1, j +

1)-th cell; am–1–j and gm–1–j, from the (i – 1, j)-th cell;

and bm–i, from the (i, j – 1)-th cell. The critical path

delay of this structure is the total delay of one

<Figure 1> Array architecture for C

<Figure 2> Circuit of (i, j) cell
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AND2 and one XOR3. In <Figure 1>, the left side

input bm–i+1 is delayed by one clock cycle relative to

bm–i for 2 £ i £ (m+1)/2.

Similar to <Figure 1>, the least significant bit

(LSB)-first semi-systolic array can be adopted efficiently to

compute D by rearranging coefficients of B, A, and G

based on (9), as depicted in <Figure 3>, where m ´

(m+1)/2 basic cells of <Figure 4> are used. Note that

(m+1)/2-th row is added for the final x–1 operation.

The proposed multiplier can be implemented by

using the above two arrays and m XOR2. It is noted

that the structures and data flows of <Figure 1> are

the same as those of <Figure 3>. Since (7) and (9)

have an identical and independent computation

structure, we can process two equations in pipelined

fashion using one systolic array. Therefore, by

unifying and retiming <Figure 1> and <Figure 3>, the

new semi-systolic multiplier architecture in <Figure

5> and <Figure 6> can be derived. In <Figure 5>,

each cell (i, j) includes two AND2 and one XOR3,

and computes C of (7) and D of (9) in sequence.

After (m+1)/2 iterations, the final result T is the

summation of C(m+1)/2 and D(m+1)/2, where C(m+1)/2 is

delayed by one clock cycle relative to D(m+1)/2. The

latency of the presented multiplier is (m+1)/2 + 3

clock cycles; the critical propagation delay time is the

total delay of one AND2 and one XOR3. Note that for

the further parallel computation and critical

propagation delay reduction, a 3-input XOR gate in

<Figure 6> can be constructed using two 2-input XOR

gates. The architecture of <Figure 6> can be

reorganized similarly to the cell structure of the

systolic array in [9]. As a result, the critical path delay

can be reduced to the total delay of one AND2 and

one XOR2 with a little area overhead.

<Figure 3> Array architecture for D

<Figure 4> Circuit of (i, j) cell

<Figure 5> Proposed multiplier for T = C + D

<Figure 6> Circuit of (i, j) cell
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Ⅲ. Analysis and comparison

The analytical expressions shown in <Table 1> are

analyzed for m = 571 using the time and area

complexity approximations of logic gates built from

the Samsung electronics, where m = 571 is one of

the finite field sizes preferred by NIST for elliptic

curve applications.

We obtained the area of the gates and latch

along with their worst-case intrinsic delays

pertaining to unit drive-strength from the Samsung

STD 150 0.13m 1.2V CMOS Standard Cell Library

databook. Using these data, we estimate the time

and area complexities of the proposed and related

works. The following is the area and time

requirements of the cells used in <Table 1>, where

T represents the time (ns), A represents the area

(transistor count), and Gaten represents the n-input

logic gate, respectively [7]: TAND2: 0.094, AAND2: 6.68,

TXOR2: 0.167, AXOR2: 12.00, TLATCH: 0.157, and ALATCH:

16.00.

<Table 1> shows the analytical comparison of

data flow, latency, throughput, time complexity,

area complexity, AT complexity, and improvement of

the presented multiplier with the multipliers

considered for comparison. The area requirement for

the presented multiplier is analyzed in terms of

number of XOR2, AND2, latches, and transistors.

It is noticed that the presented multiplier needs

a comparable number of transistors. It is evident

from <Table 1> (% reduction in #transistors row)

that the presented multiplier gets area efficiency of

38%, 42%, and -18% when compared with

multipliers [5, 8, 9], respectively. The critical path

delay (i.e., cell delay) and latency of the presented

multiplier are 0.26 ns and (m+7)/2 clock cycles,

<Table 1> Complexity comparison of semi-systolic multipliers

Multipliers Huang et al.[5] Chiou et al.[8] Lee [9] Proposed

# cells m2 U:m(m–2), V:2m M:m(m+1)/2, X:m m(m+1)/2
Latency m+1 m+1 (m+7)/2 (m+7)/2
Data flow bidirectional unidirectional unidirectional unidirectional

Throughput 1 1 1 1

Area complexity U V M X
#AND2 2m2 m2–2m 2m m2+m 0 m2+m
#XOR2 2m2 3(m2–2m) 8m m2+m m m2+(7m+1)/2
#Latch 3m2+m+1 3(m2–2m) 6m 1.6m2+2m 2m 2.1m2+6.5m

#transistors 85.4m2+16(m+1) 90.7m2+24m 44.28m2+94.68m 52.28m2+152.7m+6
Time complexity

Cell delay 0.26 0.75 0.26 0.26

Total delay 0.26m+0.26 0.75m+0.75 0.13m+0.91 0.13m+0.91

AT complexity 22.2m3+26.4m2+8.3m+4.2 68.0m3+86.0m2+18m 5.8m3+52.6m2+86.2m 6.8m3+67.4m2+139.7m

Improvement

Area
Time
AT

38%
49%
69%

42%
82%
90%

-18%
0%

-17%

-
-
-
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respectively and the total delay time is (latency) ×

(cell delay). <Table 1> (% reduction in total delay

row) indicates that the presented architecture gets

time efficiency of 49%, 82%, and 0% when

compared with multipliers [5, 8, 9], respectively. It

is noticed that the multiplier [9] needs the same

total delay (0%) and less hardware (–18%)

compared to the proposed multiplier. Although the

proposed multiplier needs a little high-chip area, it

is realizable and affordable by VLSI

implementation.

The presented systolic multiplier takes the high

throughput with one multiplication result per clock

cycle if data independent multiplications are applied

in order and computed in parallel in the proposed

multiplier. The high-throughput systolic multiplier is

desperately required because the elliptic curve digital

signature algorithm (ECDSA) needs a large number

of field multiplications and inversions, where the

inversion operation can be done by repetitive

multiplications. A comparison of results notices that

the proposed systolic multiplier is pipelined to

multiply operands with high throughput rate. Thus,

the proposed high-throughput low AT-complexity

systolic multiplier is suitable for executing digital

signatures of ECDSA, which needs many multiplications.

Ⅳ. Conclusion

This study proposes a new low-complexity semi-

systolic multiplier for efficient MMM, which is the

crucial operation in finite field arithmetic. Note

that the proposed multiplier consists of the

MSB-first PB array (Figure 1) and the LSB-first

MMM array (Figure 3). Two equally divided

arrays can be independently performed, and it is

well suited to implement both arrays in the same

hardware. In this way, we can decrease the

hardware and time requirements. The effectiveness

of our study is demonstrated by the reduced AT

complexity as compared to related works. Due to

its low-complexity, the proposed array can be

particularly useful for implementing applications in

resource constrained environments. The regularity,

simplicity, modularity, and concurrency of our

proposed architecture allow for easy extension and

thus are well suitable for VLSI implementation.
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