Browse > Article
http://dx.doi.org/10.9708/jksci.2020.25.01.013

An Efficient Multiplexer-based AB2 Multiplier Using Redundant Basis over Finite Fields  

Kim, Keewon (Dept. of Applied Computer Engineering, Dankook University)
Abstract
In this paper, we propose a multiplexer based scheme that performs modular AB2 multiplication using redundant basis over finite field. Then we propose an efficient multiplexer based semi-systolic AB2 multiplier using proposed scheme. We derive a method that allows the multiplexers to perform the operations in the cell of the modular AB2 multiplier. The cell of the multiplier is implemented using multiplexers to reduce cell latency. As compared to the existing related structures, the proposed AB2 multiplier saves about 80.9%, 61.8%, 61.8%, and 9.5% AT complexity of the multipliers of Liu et al., Lee et al., Ting et al., and Kim-Kim, respectively. Therefore, the proposed multiplier is well suited for VLSI implementation and can be easily applied to various applications.
Keywords
Finite fields; Redundant basis; Multiplication; Systolic array; Multiplexer-based;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. J. Menezes, P.C. van Oorschot, S.A. Vanstone, "Handbook of Applied Cryptography" Boca Raton, FL, CRC Press, 1996.
2 R. E. Blahut, "Theory and Practice of Error Control Codes" Reading, MA, Addison-Wesley, 1983.
3 N. Kobliz, “Elliptic Curve Cryptography,” Math. Computation, Vol. 48, No. 177, pp. 203-209, Jan. 1987. DOI: 10.1090/S0025-5718-1987-0866109-5   DOI
4 P. Montgomery, “Modular Multiplication without Trial Division,” Mathematics of Computation, Vol. 44, No. 170, pp. 519-521, Apr. 1985. DOI: 10.1090/S0025-5718-1985-0777282-X   DOI
5 C. K. Koc, T. Acar, “Montgomery Multiplication in GF(2k),” Designs Codes and Cryptography, Vol. 14, No. 1, pp. 57-69, Apr. 1998. DOI: 10.1023/A:1008208521515   DOI
6 C. Y. Lee, J. S. Horng, I. C. Jou, "Low-complexity Bit-parallel Systolic Montgomery Multipliers for Special Classes of GF(2m)," IEEE Transactions on Computers, Vol. 54, No. 9, pp. 1061-1070, July 2005. DOI: 10.1109/TC.2005.147   DOI
7 C. W. Chiou, C. Y. Lee, A. W. Deng, J. M. Lin, “Concurrent Error Detection in Montgomery Multiplication over GF(2m),” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E89-A, No. 2, pp. 566-574, Feb. 2006. DOI: 10.1093/ietfec/e89-a.2.566   DOI
8 A. Hariri, A. Reyhani-Masoleh, "Bit-serial and Bit-parallel Montgomery Multiplication and Squaring over GF(2m)," IEEE Transactions on Computers, Vol. 58, No. 10, pp. 1332-45, May 2009. DOI: 10.1109/TC.2009.70   DOI
9 A. Hariri, A. Reyhani-Masoleh, "Concurrent Error Detection in Montgomery Multiplication over Binary Extension Fields," IEEE Transactions on Computers, Vol. 60, No. 9, pp. 1341-53, Sep. 2011. DOI: 10.1109/TC.2010.258   DOI
10 K. W. Kim, W. J. Lee, “Efficient Cellular Automata Based Montgomery AB2 Multipliers over GF(2m),” IETE Technical Review, Vol. 31, No. 1, pp. 92-102, Jan. 2014. DOI: 10.1080/02564602.2014.891383   DOI
11 K. W. Kim, J. C. Jeon, “Polynomial Basis Multiplier Using Cellular Systolic Architecture,” IETE Journal of Research, Vol. 60, No. 2, pp. 194-199, Jun. 2014. DOI: 10.1080/03772063.2014.914699   DOI
12 S. H. Choi, K. J. Lee, "Low Complexity Semi-systolic Multiplication Architecture over GF(2m)," IEICE Electron. Express, Vol. 11, No. 20, pp. 20140713, Oct. 2014. DOI: 10.1587/elex.11.20140713   DOI
13 C. H. Liu, N. F. Huang, C. Y. Lee, “Computation of AB2 Multiplier in GF(2m) Using an Efficient Low-complexity Cellular Architecture,” IEICE Transactions on Fundamentals of Electronics, Vol. E83-A, No. 12, pp. 2657-2663, Dec. 2000.
14 K. W. Kim, J. C. Jeon, "A Semi-systolic Montgomery Multiplier over GF(2m)," IEICE Electonics Express, Vol. 12, No. 21, pp. 20150769, Nov. 2015. DOI: 10.1587/elex.12.20150769   DOI
15 S. W. Wei, “A Systolic Power-sum Circuit for GF(2m),” IEEE Transactions on Computers, Vol. 43, No. 2, pp. 226-229, Feb. 1994. DOI: 10.1109/12.262128   DOI
16 C. L. Wang, J. H. Guo, "New Systolic Arrays for C+AB2, Inversion, and Division in GF(2m)," IEEE Transactions on Computers, Vol. 49, No. 10, pp. 1120-1125, Oct. 2000. DOI: 10.1109/12.888047   DOI
17 C. Y. Lee, E. H. Lu, L. F. Sun, “Low-complexity Bit-parallel Systolic Architecture For Computing AB2+C in a Class of Finite Field GF(2m),” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 48, No. 5, pp. 519-523, May 2001. DOI: 10.1109/82.938363   DOI
18 Y. R. Ting, E. H. Lu, J. Y. Lee, “Low Complexity Bit-parallel Systolic Architecture for Computing C+AB2 Over A Class of GF(2m),” Integration, the VLSI journal, Vol. 37, No. 3, pp. 167-176, Aug. 2004. DOI: 10.1016/j.vlsi.2004.01.003   DOI
19 K. W. Kim, W. J. Lee, “Low-complexity Parallel and Serial Systolic Architectures for AB2 Multiplication in GF(2m),” IETE Technical Review, Vol. 30, No. 2, pp. 134-141, 2013. DOI: 10.4103/0256-4602.110552   DOI
20 C. Y. Lee, A. W. Chiou, J. M. Lin, “Low-complexity Bit-parallel Systolic Architectures for Computing A(x)B2(x) over GF(2m),” IEEE Proceedings of Circuits Devices and Systtems, Vol. 153, No. 4, pp. 399-406, Aug. 2006. DOI: 10.1049/ip-cds:20050188   DOI
21 H. W. Chang, W. Y. Liang, C. W. Chiou, "Low Cost Dual-Basis Multiplier over GF(2m) Using Multiplexer Approach," Knowledge Discovery and Data Mining. Advances in Intelligent and Soft Computing, Vol 135. pp. 185-192, 2012. DOI: 10.1007/978-3-642-27708-5_25
22 K. W. Kim, W. J. Lee, "An Efficient Parallel Systolic Array for AB2 over GF(2m)," IEICE Electronics Express, Vol. 10, No. 20, pp. 20130585, 2013. DOI: 10.1587/elex.10.20130585   DOI
23 T. W. Kim, K. W. Kim, "Low-latency Montgomery AB2 Multiplier Using Redundant Representation over GF(2m)," IEMEK Journal of Embedded Systems and Applications, Vol. 12, No. 1, Feb. 2017. DOI: 10.14372/IEMEK.2017.12.1.11
24 K. Z. Pekmestzi, "Multiplexer-based Array Multipliers," IEEE Trans. Comput., Vol. 48, No. 1, pp.15-23, Jan. 1999. DOI: 10.1109/12.743408   DOI
25 S. S. Priya, K. G. Das, N. M. SivaMangai, P. K. Kumar, "Multiplexer Based High Throughput S-box for AES Application," 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, pp. 242-247, Feb. 2015, DOI: 10.1109/ECS.2015.7124901
26 G. Drolet, “A New Representation of Elements of Finite Fields Yielding Small Complexity Arithmetic Circuits,” IEEE Transactions on Computers, Vol. 47, No. 9, pp. 938-946, Sep. 1998. DOI: 10.1109/12.713313   DOI
27 H. Wu, M. A. Hasan, I. F. Blake, S. Gao, "Finite Field Multiplier Using Redundant Representation," IEEE Transactions on Computers, Vol. 51, No. 11, pp. 1306-1316, Nov. 2002. DOI: 10.1109/TC.2002.1047755   DOI
28 STMicroelectronics. http://www.st.com.
29 R. J. Baker, H. W. Li, D. E. Boyce, "CMOS Circuit, Design, Layout, and Simulation" New York, IEEE Press, 1998.