• Title/Summary/Keyword: Self-heating effect

Search Result 55, Processing Time 0.034 seconds

Analysis on Self-Heating Effect in 7 nm Node Bulk FinFET Device

  • Yoo, Sung-Won;Kim, Hyunsuk;Kang, Myounggon;Shin, Hyungcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.204-209
    • /
    • 2016
  • The analyses on self-heating effect in 7 nm node non-rectangular Bulk FinFET device were performed using 3D device simulation with consideration to contact via and pad. From self-heating effect simulation, the position where the maximum lattice temperature occurs in Bulk FinFET device was investigated. Through the comparison of thermal resistance at each node, main heat transfer path in Bulk FinFET device can be determined. Self-heating effect with device parameter and operation temperature was also analyzed and compared. In addition, the impact of interconnects which are connected between the device on self-heating effect was investigated.

Dependence of Self-heating Effect on Width/Length Dimension in p-type Polycrystalline Silicon Thin Film Transistors

  • Lee, Seok-Woo;Kim, Young-Joo;Park, Soo-Jeong;Kang, Ho-Chul;Kim, Chang-Yeon;Kim, Chang-Dong;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.505-508
    • /
    • 2006
  • Self-heating induced device degradation and its width/length (W/L) dimension dependence were studied in p-type polycrystalline silicon (poly-Si) thin film transistors (TFTs). Negative channel conductance was observed under high power region of output curve, which was mainly caused by hole trapping into gate oxide and also by trap state generation by self-heating effect. Self-heating effect became aggravated as W/L ratio was increased, which was understood by the differences in heat dissipation capability. By reducing applied power density normalized to TFT area, self-heating induced degradation could be reduced.

  • PDF

Three-Dimensional Analysis of Self-Heating Effects in SOI Device (SOI 소자 셀프-히팅 효과의 3차원적 해석)

  • 이준하;이흥주
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.29-32
    • /
    • 2004
  • Fully depleted Silicon-on-Insulator (FD-SOI) devices lead to better electrical characteristics than bulk CMOS devices. However, the presence of a thin top silicon layer and a buried SiO2 layer causes self-heating due to the low thermal conductivity of the buried oxide. The electrical characteristics of FDSOI devices strongly depend on the path of heat dissipation. In this paper, we present a new three-dimensional (3-D) analysis technique for the self-heating effect of the finger-type and bar-type transistors. The 3-D analysis results show that the drain current of the finger-type transistor is 14.7% smaller than that of the bar-type transistor due to the 3-D self-heating effect. We have learned that the rate of current degradation increases significantly when the width of a transistor is smaller that a critical value in a finger-type layout. The current degradation fro the 3-D structures of the finger-type and bar-type transistors is investigated and the design issues are also discussed.

  • PDF

Establishment of calculation methodology and thermal analysis for the development of a water calorimeter

  • Kang, M.Y.;Kim, Junhyuck;Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2620-2629
    • /
    • 2020
  • As an early stage in the development of a water calorimeter, this study established a computer simulation methodology for analyzing the thermal behavior of a water calorimeter based on radiation transport and energy deposition. As a result, this study developed a method wherein the energy deposition distribution, which is obtained by applying Monte Carlo methods in water calorimeters, is directly used as a heat source for the thermal analysis model. Based on the proposed method, heat transfer in a water vessel and the effect of thermistor self-heating were analyzed. Through an analysis of the water velocities with and without a water vessel, it was found that a water vessel can serve as a convection barrier. Furthermore, it was confirmed that when considering thermistor self-heating, the water temperature change at the thermistor location is 0.219 mK higher compared to that when the thermistor was not considered. Therefore, thermistor self-heating must be considered to analyze the thermal behavior of a water calorimeter more accurately.

Technical Obstacles to Suftla Flexible Microelectronics

  • Miyasaka, Mitsutoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1763-1766
    • /
    • 2007
  • Three technical obstacles must be overcome to build a fruitful business in the nascent industry of flexible microelectronics: the self-heating effect of thin film transistors (TFTs), the thermal and mechanical durability of flexible devices, and the cost issue. The self-heating effect is controlled through TFT shape, TFT electrical performance, dimensional reduction and energy-efficient circuits. Plastic engineering is one of the keys to solving thermal and mechanical durability problems faced by flexible microelectronics devices. For the Suftla flexible microelectronics business to be viable, Suftla transfer yield must be sufficiently high to keep down device cost. Improving the transfer yield is not easy, but it is the same challenge already faced and cleared in the TFT liquid crystal display industry.

  • PDF

Calibration of Thermistors for Precision Temperature Measurements (정밀온도측정을 위한 서미스터 교정)

  • Gam, Kee-Sool;Kim, Yong-Gyoo;Yang, In-Seok
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.329-335
    • /
    • 2011
  • We demonstrated that high-stability thermistors can be calibrated with an uncertainty less than 1 mK, if the error due to the heat conduction is minimized. We first investigated the effect of the self-heating of typical thermistor probes to see how accurate we need to determine the effect of self-heating. We, then, calibrated thermistors and fitted the results using various modeling equations. We found out that the heat conduction is an important factor in achieving the calibration uncertainty under 1 mK for thermistors when the diameter of the probe is as thick as 10 mm. Therefore, we controlled the room temperature within $0.5^{\circ}C$ to minimize the heat conduction error during the calibration. The calibration with an uncertainty below 1 mK was possible when the stabilization time for each calibration was long enough to obtain a good thermal equilibrium.

Self-Heating Effects in β-Ga2O3/4H-SiC MESFETs (β-Ga2O3/4H-SiC MESFETs에서의 Self-Heating)

  • Kim, Min-Yeong;Seo, Hyun-Su;Seo, Ji-Woo;Jung, Seung-Woo;Lee, Hee-Jae;Byun, Dong-Wook;Shin, Myeong-Cheol;Schweitz, Michael A.;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Despite otherwise advantageous properties, the performance and reliability of devices manufactured in β-Ga2O3 on semi-insulating Ga2O3 substrates may degrade because of poorly mitigated self-heating, which results from the low thermal conductivity of Ga2O3 substrates. In this work, we investigate and compare self-heating and device performance of β-Ga2O3 MESFETs on substrates of semi-insulating Ga2O3 and 4H-SiC. Electron mobility in β-Ga2O3 is negatively affected by increasing lattice temperature, which consequently also negatively influences device conductance. The superior thermal conductivity of 4H-SiC substrates resulted in reduced β-Ga2O3 lattice temperatures and, thus, mitigates MESFET drain current degradation. This, in turn, allows practically reduced device dimensions without deteriorating the performance and improved device reliability.

Ohmic Resistance of AlGaAs/GaAs HBT at High Temperature (고온 특성을 위한 AlGaAs/GaAs HBT의 설계에 관한 연구)

  • 이준영;신훈법;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.366-370
    • /
    • 2002
  • GaAs has become a very popular material for the fabrication of high frequency, low noise and microwave power devices. GaAs devices are also well suited for high temperature operation because of the large band gap of this material. The standard GaAs technology and device structures have to be modified for stable operation at high temperature. In this paper, AlGaAs/GaAs HBT considering stable ohmic contact at high temperature as well as thermal effect such as self-heating effect are introduced. All the data obtained study will be used as input data for the simulator and the result will be compared with an analytical model available in this study,

  • PDF

Nonequilibrium Heat Transfer Characteristics During Ultrafast Pulse Laser Heating of a Silicon Microstructure

  • Lee Seong Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1378-1389
    • /
    • 2005
  • This work provides the fundamental knowledge of energy transport characteristics during very short-pulse laser heating of semiconductors from a microscopic viewpoint. Based on the self-consistent hydrodynamic equations, in-situ interactions between carriers, optical phonons, and acoustic phonons are simulated to figure out energy transport mechanism during ultrafast pulse laser heating of a silicon substrate through the detailed information on the time and spatial evolutions of each temperature for carriers, longitudinal optical (LO) phonons, acoustic phonons. It is found that nonequilibrium between LO phonons and acoustic phonons should be considered for ultrafast pulse laser heating problem, two-peak structures become apparently present for the subpicosecond pulses because of the Auger heating. A substantial increase in carrier temperature is observed for lasers with a few picosecond pulse duration, whereas the temperature rise of acoustic and phonon temperatures is relatively small with decreasing laser pulse widths. A slight lagging behavior is observed due to the differences in relaxation times and heat capacities between two different phonons. Moreover, the laser fluence has a significant effect on the decaying rate of the Auger recombination.