Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.1.13

Self-Heating Effects in β-Ga2O3/4H-SiC MESFETs  

Kim, Min-Yeong (Department of Electronic Materials Engineering, Kwangwoon University)
Seo, Hyun-Su (Department of Electronic Materials Engineering, Kwangwoon University)
Seo, Ji-Woo (Department of Electronic Materials Engineering, Kwangwoon University)
Jung, Seung-Woo (Department of Electronic Materials Engineering, Kwangwoon University)
Lee, Hee-Jae (Department of Electronic Materials Engineering, Kwangwoon University)
Byun, Dong-Wook (Department of Electronic Materials Engineering, Kwangwoon University)
Shin, Myeong-Cheol (Department of Electronic Materials Engineering, Kwangwoon University)
Schweitz, Michael A. (Department of Electronic Materials Engineering, Kwangwoon University)
Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.1, 2022 , pp. 86-92 More about this Journal
Abstract
Despite otherwise advantageous properties, the performance and reliability of devices manufactured in β-Ga2O3 on semi-insulating Ga2O3 substrates may degrade because of poorly mitigated self-heating, which results from the low thermal conductivity of Ga2O3 substrates. In this work, we investigate and compare self-heating and device performance of β-Ga2O3 MESFETs on substrates of semi-insulating Ga2O3 and 4H-SiC. Electron mobility in β-Ga2O3 is negatively affected by increasing lattice temperature, which consequently also negatively influences device conductance. The superior thermal conductivity of 4H-SiC substrates resulted in reduced β-Ga2O3 lattice temperatures and, thus, mitigates MESFET drain current degradation. This, in turn, allows practically reduced device dimensions without deteriorating the performance and improved device reliability.
Keywords
MESFET; ${\beta}-Ga_2O_3$; 4H-SiC; Self-heating effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. J. Baliga, IEEE Electron Device Lett., 10, 455 (1989). [DOI: https://doi.org/10.1109/55.43098]   DOI
2 J. W. Yu, P. C. Yeh, S. L. Wang, Y. R. Wu, M. H. Mao, H. H. Lin, and L. H. Peng, Appl. Phys. Lett., 101, 183501 (2012). [DOI: https://doi.org/10.1063/1.4764554]   DOI
3 S. Jo, G. Yoo, and J. Heo, J. Korean Phys. Soc., 74, 1171 (2019). [DOI: https://doi.org/10.3938/jkps.74.1171]   DOI
4 A. S. Royet, T. Ouisse, B. Cabon, O. Noblanc, C. Arnodo, and C. Brylinski, IEEE Trans. Electron Devices, 47, 2221 (2000). [DOI: https://doi.org/10.1109/16.877187]   DOI
5 S. Perichon, V. Lysenko, B. Remaki, D. Barbier, and B. Champagnon, J. Appl. Phys., 86, 4700 (1999). [DOI: https://doi.org/10.1063/1.371424]   DOI
6 Y. Chang, Y. Zhang, Y. Zhang, and K. Y. Tong, J. Appl. Phys., 99,044501 (2006). [DOI: https://doi.org/10.1063/1.2171776]   DOI
7 Z. Ramezani and A. A. Orouji, IEEE Trans. Electron Devices, 61, 3570 (2014). [DOI: https://doi.org/10.1109/TED.2014.2352317]   DOI
8 T. H. Shim, S. J. Kim, G. S. Lee, K. S. Kim, W. J. Cho, and J. G. Park, J. Appl. Phys., 103, 094522 (2008). [DOI: https://doi.org/10.1063/1.2913498]   DOI
9 M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 103, 123511 (2013). [DOI: https://doi.org/10.1063/1.4821858]   DOI
10 J. Cho, Z. Li, M. Asheghi, and K. E. Goodson, Annu. Rev. Heat Transfer, 18, 7 (2015). [DOI: https://doi.org/10.1615/Annual RevHeatTransfer.2015011335]   DOI
11 S. A. Russell, A. Perez-Tomas, C. F. McConville, C. A. Fisher, D. P. Hamilton, P. A. Mawby, and M. R. Jennings, IEEE J. Electron Devices Soc., 5, 256 (2017). [DOI: https://doi.org/10.1109/JEDS.2017.2706321]   DOI
12 J. Oh, J. Ma, and G. Yoo, Results Phys., 13, 102151 (2019). [DOI: https://doi.org/10.1016/j.rinp.2019.02.087]   DOI
13 D. Madadi and A. A. Orouji, Mater. Today Commun., 26, 102044 (2021). [DOI: https://doi.org/10.1016/j.mtcomm.2021.102044]   DOI
14 B. K. Mahajan, Y. P. Chen, J. Noh, P. D. Ye, and M. A. Alam, Appl. Phys. Lett., 115, 173508 (2019). [DOI: https://doi.org/10.1063/1.5116828]   DOI
15 Y. J. Lee, M. A. Schweitz, J. M. Oh, and S. M. Koo, Materials, 13, 434 (2020). [DOI: https://doi.org/10.3390/ma13020434]   DOI
16 M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 100, 013504 (2012). [DOI: https://doi.org/10.1063/1.3674287]   DOI
17 D. W. Byun, Y. J. Lee, J. M. Oh, M. A. Schweitz, and S. M. Koo, Electron. Mater. Lett., 17, 479 (2021). [DOI: https://doi.org/10.1007/s13391-021-00297-6]   DOI