• 제목/요약/키워드: Schur ring

검색결과 11건 처리시간 0.021초

Schur환론의 발생과 발전, 군론과 그래프론에서의 역할 (Genesis and development of Schur rings, as a bridge of group and algebraic graph theory)

  • 최은미
    • 한국수학사학회지
    • /
    • 제19권2호
    • /
    • pp.125-140
    • /
    • 2006
  • 군환의 특별한 부분환으로 정의된 수어환(Schur ring)은 치환군의 구조 연구를 위해 1933년 I.Schur에 의해 소개되었다. 그 후 30여 년 동안 군론과 표현론에서 응용되던 수어환은 1970년대에 이르러 획기적인 분기점을 맞이하게 된다. 조합론, 특별히 대수적 그래프에 관한 많은 연구 속에서, 그래프를 분류하기위해 수어환을 이용하려는 새로운 시도가 Klin과 Poschel에 의해 제안되었다. 이것은 당시 대수학에서 이룩해낸 유한단순군의 분류에 큰 도움을 받은 것이다. 이 논문에서는 수어환의 발생에 대한 역사적 배경과, 수어환이 군이론에서 어떻게 이용되었는지를 살펴보고, 또한 그래프이론에서의 역할을 조사한다.

  • PDF

DECOMPOSITION OF SOME CENTRAL SEPARABLE ALGEBRAS

  • Park, Eun-Mi;Lee, Hei-Sook
    • 대한수학회지
    • /
    • 제38권1호
    • /
    • pp.77-85
    • /
    • 2001
  • If an Azumaya algebra A is a homomorphic image of a finite group ring RG where G is a direct product of subgroups then A can be decomposed into subalgebras A(sub)i which are homomorphic images of subgroup rings of RG. This result is extended to projective Schur algebras, and in this case behaviors of 2-cocycles will play major role. Moreover considering the situation that A is represented by Azumaya group ring RG, we study relationships between the representing groups for A and A(sub)i.

  • PDF

CENTRAL SEPARABLE ALGEBRAS OVER REGULAR DOMAIN

  • Choi, Eun-Mi;Lee, Hei-Sook
    • 대한수학회보
    • /
    • 제36권3호
    • /
    • pp.503-512
    • /
    • 1999
  • Over a field k, every schur k-algebra is a cyclotomic algebra due to Brauer-Witt theorem. Similarly every projective Schur k-division algebra is itself a radical algebra by Aljadeff-Sonn theorem. We study the two theorems over a certain commutative ring, and prove similar results over regular domain containing a field.

  • PDF

Certain exact complexes associated to the pieri type skew young diagrams

  • Chun, Yoo-Bong;Ko, Hyoung J.
    • 대한수학회보
    • /
    • 제29권2호
    • /
    • pp.265-275
    • /
    • 1992
  • The characteristic free representation theory of the general linear group has found a wide range of applications, ranging from the theory of free resolutions to the symmetric function theory. Representation theory is used to facilitate the calculation of explicit free resolutions of large classes of ideals (and modules). Recently, K. Akin and D. A. Buchsbaum [2] realized the Jacobi-Trudi identity for a Schur function as a resolution of GL$_{n}$-modules. Over a field of characteristic zero, it was observed by A. Lascoux [6]. T.Jozefiak and J.Weyman [5] used the Koszul complex to realize a formula of D.E. Littlewood as a resolution of schur modules. This leads us to further study resolutions of Schur modules of a particular form. In this article we will describe some new classes of finite free resolutions associated to the Pieri type skew Young diagrams. As a special case of these finite free resolutions we obtain the generalized Koszul complex constructed in [1]. In section 2 we review some of the basic difinitions and properties of Schur modules that we shall use. In section 3 we describe certain exact complexes associated to the Pieri type skew partitions. Throughout this article, unless otherwise specified, R is a commutative ring with an identity element and a mudule F is a finitely generated free R-module.e.

  • PDF

A REMARK ON MULTIPLICATION MODULES

  • Choi, Chang-Woo;Kim, Eun-Sup
    • 대한수학회보
    • /
    • 제31권2호
    • /
    • pp.163-165
    • /
    • 1994
  • Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module P over a semiprime ring R is irreducible if and only if En $d_{R}$(P) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module M over a semiprime ring R is irreducible if and only if En $d_{R}$(M) is a division ring. In case R is a commutative ring, we obtain the following: An R-module M is irreducible if and only if En $d_{R}$(M) is a division ring and M is a multiplication R-module. Throughout this paper, R is commutative ring with identity and all modules are unital left R-modules. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists and ideal I of R such that N=IM. Cyclic R-modules are multiplication modules. In particular, irreducible R-modules are multiplication modules.dules.

  • PDF

CAUCHY DECOMPOSITION FORMULAS FOR SCHUR MODULES

  • Ko, Hyoung J.
    • 대한수학회보
    • /
    • 제29권1호
    • /
    • pp.41-55
    • /
    • 1992
  • The characteristic free representation theory of the general linear group is one of the powerful tools in the study of invariant theory, algebraic geometry, and commutative algebra. Recently the study of such representations became a popular theme. In this paper we study the representation-theoretic structures of the symmetric algebra and the exterior algebra over a commutative ring with unity 1.

  • PDF

AN ARTINIAN RING HAVING THE STRONG LEFSCHETZ PROPERTY AND REPRESENTATION THEORY

  • Shin, Yong-Su
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.401-415
    • /
    • 2020
  • It is well-known that if char𝕜 = 0, then an Artinian monomial complete intersection quotient 𝕜[x1, …, xn]/(x1a1, …, xnan) has the strong Lefschetz property in the narrow sense, and it is decomposed by the direct sum of irreducible 𝖘𝖑2-modules. For an Artinian ring A = 𝕜[x1, x2, x3]/(x16, x26, x36), by the Schur-Weyl duality theorem, there exist 56 trivial representations, 70 standard representations, and 20 sign representations inside A. In this paper we find an explicit basis for A, which is compatible with the S3-module structure.

GLn- DECOMPOSITION OF THE SCHUR COMPLEX Sr2 φ)

  • Choi, Eun J.;Kim, Young H.;Ko, Hyoung J.;Won, Seoung J.
    • 대한수학회보
    • /
    • 제40권1호
    • /
    • pp.29-51
    • /
    • 2003
  • In this paper we construct a natural filtration associated to the plethysm $S_{r}(\wedge^2 \varphi)$ over arbitrary commutative ring R. Let $\phi$ : G longrightarrow F be a morphism of finite free R-modules. We construct the natural filtration of $S_{r}(\wedge^2 \varphi)$ as a $GL(F){\times}GL(G)$- complex such that its associated graded complex is ${\Sigma}_{{\lambda}{\in}{\Omega}_{\gamma}}=L_{2{\lambda}{\varphi}$, where ${{\Omega}_{\gamma}}^{-}$ is a set of partitions such that $│\wedge│\;=;{\gamma}\;and\;2{\wedge}$ is a partition of which i-th term is $2{\wedge}_{i}$. Specializing our result, we obtain the filtrations of $S_{r}(\wedge^2 F)\;and\;D_{r}(D_2G).