SEMI-PRIMENESS OF THE ENDOMORPHISM RING OF A PROJECTIVE MODULE

SOON-SOOK BAE

ABSTRACT. Semi-meet-prime projective modules and fully invariant meet-prime submodules of a projective module are studied. Actually a generalization of the Schur's lemma and semi-prime endomorphism rings of projective modules are considered.

1. Introduction

Assume that ring R is any associative ring with identity. The ring of all R-endomorphisms on a left R-module RM, denoted by $End_R(M)$, will be written on the right side of M as right operators on RM, that is, $RM_{End_R(M)}$ will be considered in this paper.

A module $_RM$ is said to be simple if 0 and M are the only submodules of $_RM$.

For any subset J of $End_R(M)=S$, let $Im J=MJ=\sum_{f\in J}Im f=\sum_{f\in J}Mf$ be the sum of images of endomorphisms in J.

Also we call N an open submodule if $N=N^o$, $N^o=\sum_{f\in S, \operatorname{Im} f\leq N}\operatorname{Im} f$, is the sum of all images of endomorphisms contained in N.

A left R-module $_RM$ is said to be *openly simple* if every *open* submodule is improper, that is, every *open* submodule is either 0 or M.

THEOREM 1.1 ([5]). (Generalized Schur's Lemma I) Each projective and openly simple module $_RT$ has a division endomorphism ring $End_R(T)$.

Received November 19, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 16D40, 16N60, 16S60, 16S50,

Key words and phrases: projective, self-generated, openly simple, simple modules, subdirect product, sudirect sum, division ring.

DEFINITION 1.2 ([4]). For a submodule $P \leq M$ of a left R-module RM, P is said to be a *meet-prime* submodule of RM if it satisfies the following conditions: for any *open* submodules $A, B \leq M$ with $P^o + A \neq M$ or $P^o + B \neq M$,

- (1) if $A \cap B \leq P$, then $A \leq P$ or $B \leq P$,
- (2) if $(P \cap A \cap B)^o \neq 0$, then $A \leq P$ or $B \leq P$,
- (3) if $P \cap A = 0$, then A = 0 or P + A = M.

One of the important results related to meet-prime submodules is as follows: If $P \leq M$ is any fully invariant meet-prime submodule of $_RM$, then

$$I^P = \{ f \in S \mid \text{Im} f \leq P \} \subseteq S \text{ is a prime ideal of } S.$$

Any ring R is said to be *semi-prime* if it has the zero intersection of all prime ideals, i.e., $\cap P_{\alpha} = 0$, for which P_{α} is a prime ideal of R.

Any left R-module $_RM$ is said to be semi-meet-prime if it has the zero intersection of all fully invariant meet-prime open submodules of $_RM$, i.e., $\cap P_{\alpha}=0$, for which P_{α} is a fully invariant meet-prime open submodule of $_RM$.

Since the next proposition is the same as $_RM$ with epimorphisms $\phi_{\gamma}: _RM \to _RM_{\gamma}$ is a subdirect product of the modules $_RM_{\gamma}$ if and only if $\cap_{\gamma} \ker \phi_{\gamma} = 0$, the definition of P-reject of a module studied in [1] will not be introduced here.

PROPOSITION 1.3 [2]. An R-module M is a subdirect product of a class \mathcal{U} of left R-modules if and only if the P-reject of M in \mathcal{U} is zero.

2. Results

THEOREM 2.1. For any module $_RM$, the following are equivalent:

- (1) $_{R}M$ is semi-meet prime;
- (2) _RM is a subdirect product of openly simple modules.

PROOF. Since the meet-prime radical $rad(M) = \bigcap_{\alpha} P_{\alpha} = \bigcap_{\alpha} P_{\alpha}{}^{o}$, for which P_{α} is a meet-prime submodule of ${}_{R}M$ for α the proof is completed easily by applying the Corollary 2.10 in [4].

Since distinct fully invariant meet-prime open submodules $P \leq M$ and $Q \leq M$ of any left R-module RM have the sum P+Q=M, we have that $RM/P = R(P+Q)/P \simeq RQ/(P\cap Q) \to RP/(P\cap Q) \simeq RM/Q$ is the only trivial homomorphism. Thus we have a next remark.

REMARK 2.2. If P and Q are distinct fully invariant meet-prime open submodules of any self-generated left R-module $_RM$, then the additive group

$$Hom_R(M/P, M/Q) = 0.$$

LEMMA 2.3. For a fully invariant meet-prime submodule P of a left R-module $_RM$, if $_RM$ is self-generated, then we have the openly simple quotient R-module $_RM/P$.

THEOREM 2.4. For any self-generated R-module $_RM$, if $_RM$ is semimeet prime, then the endomorphism ring $End_R(M)$ is a sudirect sum of prime rings. Furthermore the endomorphism ring $End_R(M)$ is a semiprime ring.

PROOF. The proof is completed by Theorem 2.1 and Lemma 2.3. □

Assume that a left R-module $_RM$ is projective. Then for any fully invariant meet-prime submodule $P \leq M$ in $_RM$, we let $f:_RM/P \to _RM/P$ be any endomorphism on the quotient module $_RM/P$ over ring R. Then we have that $P \leq K = \pi^{-1}(\mathrm{Im}f) \leq M$ and $K/P = \mathrm{Im}f$, where $\pi:_RM \to _RM/P$ is the projection. It suffices to show that K is an open submodule of $_RM$, because it follows that K = M or K = P from the meet-primeness of P. More precisely, to show that K is open in $_RM$ consider the following diagram:

$$\begin{array}{ccc} _{R}M & \xrightarrow{\exists \ k} & _{R}K \\ \\ \pi \Big\downarrow & & \Big\downarrow \pi_{K} \\ \\ _{R}M/P & \xrightarrow{f} & _{R}K/P & \longrightarrow & 0. \end{array}$$

Since $_RM$ is projective for an epimorphic homomorphism $\pi f:_RM \xrightarrow{\pi} _RM/P \xrightarrow{f} _RK/P$, there is an endomorphism $k:_RM \to _RK \subseteq _RM$ such that $\pi f = k\pi_K$, where $\pi_K:_RK \to _RM/P$ is the restriction of π to K. Therefore $\mathrm{Im} k = K$ follows immediately. Thus K = M or K = P follows from the meet-primeness of $P \leq M$. Therefore the quotient module $_RM/P$ is openly simple, for each fully invariant meet-prime submodule $P \leq M$, if $_RM$ is projective.

As a result of this, we can generalize the Schur's lemma.

THEOREM 2.5. (Generalized Schur's Lemma III) If $_RM$ is projective and if $P \leq M$ is any fully invariant meet-prime submodule of $_RM$, then $End_R(M/P)$ is a division ring.

PROOF. For any fully invariant meet-prime submodule P, the quotient module $_RM/P$ is an openly simple module over ring R. Considering the following diagram:

for any non-zero endomorphism $f: {}_RM/P \to {}_RM/P$ we have an epimorphism f. We claim that f is an automorphism. Since ${}_RM$ is projective and $\pi f: {}_RM \xrightarrow{\pi} {}_RM/P \xrightarrow{f} {}_RM/P$ and $\pi: {}_RM \to {}_RM/P$ are epimorphisms, there are endomorphisms $f_0, g: {}_RM \to {}_RM$ such that $g\pi f = \pi$ and $f_0\pi = \pi f$. Now that f_0 has its induced homomorphism $f: {}_RM/P \to {}_RM/P$, in other words, $f = f_0^*$ is the induced homomorphism by f_0 , then we conclude that $g^*f = 1_{RM/P}$ follows from $gf_0\pi = \pi$. Thus f is an automorphism. Therefore the endomorphism ring $End_R(M/P)$ is a division ring.

Remark 2.6. Since every simple module $_RM$ over any ring R is projective and the trivial $0 \le M$ is fully invariant meet-prime in $_RM$, the above Theorem 2.5 is a generalization of the Schur's lemma.

PROPOSITION 2.7. For any projective module $_RM$, the following are equivalent:

- (1) $_{R}M$ is semi-meet prime;
- (2) _RM is a subdirect product of openly simple projective modules;
- (3) $End_R(M)$ is a subdirect sum of division rings.

PROOF. It is sufficient to show that (3) implies (2) because the rest parts of proof directly follow from the previous results. Assume that $End_R(M)$ is a subdirect sum of division rings $\{E_\alpha\}$. Then there is a monomorphism $\iota: End_R(M) \to \prod_\alpha E_\alpha$ such that $End_R(M)\iota\pi_\alpha = E_\alpha$ for every α . From a construction of the direct product $\prod_\beta F_\beta \leq \prod_\alpha E_\alpha$, with $F_\alpha = 0$ and $F_\beta = E_\beta$ whenever $\beta \neq \alpha$. Then $\iota^{-1}(\prod_\beta F_\beta) \leq End_R(M)$ is a subring of the endomorphism ring $End_R(M)$ whose image $Im(\iota^{-1}(\prod_\beta F_\beta)) = \sum_{f \in \iota^{-1}(\prod_\beta F_\beta)} Imf \leq M$ is an open meet-prime submodule of $_RM$, in fact it is the kernel $\ker \iota^{-1}(\prod_\gamma G_\gamma)$ of $\iota^{-1}(\prod_\gamma G_\gamma)$, where $G_\alpha = E_\alpha$ and $G_\gamma = 0$ if $\gamma \neq \alpha$ for every γ . Furthermore $_RM$ is a subdirect product of the openly simple modules, images $\{Im(\iota^{-1}(\prod_\gamma G_\gamma))\}_\alpha$. Since E_α is a division ring for each α , we have an openly simple module $Im(\iota^{-1}(\prod_\gamma G_\gamma))$ for γ .

THEOREM 2.8. For any projective module $_RM$, if at least one of the following equivalent conditions is satisfied:

- (1) $_{R}M$ is semi-meet prime;
- (2) _RM is a subdirect product of openly simple projective modules;
- (3) $End_R(M)$ is a subdirect sum of division rings,

then we have a semi-prime endomorphism ring $End_R(M)$.

PROOF. It follows from Proposition 2.7.

References

- F. W. Anderson and K. R. Fuller, Rings and Categories of modules, 2nd ed., Springer-Verlag, New York Heidelberg Berlin, 1992.
- [2] S. -S. Bae, On Reject of Subdirect Product, Theses of Kyungnam University 14 (1987), 7–10.
- [3] ______, On Ideals of Endomorphism Ring of Projective Module, Pusan Kyŏngnam Mathematical Journal 5 (1989), 81–85.
- [4] _____, Modules with Prime Endomorphism Rings, J. Korean Math. Soc. 38 (2001), no. 5, 987-1030.
- [5] ______, Generalized Schur's Lemmas, Journal of Graduate School, Kyungnam University 16 (2001), no. 2, 7–11.
- [6] I. N. Herstein, Noncommutative Rings, The Mathematical Association of America, 1968, 1994.
- [7] Joachim Lambek, Lectures on Rings and Modules, Chelsea Publishing Company, New York, N.Y. 2nd ed., 1976.
- [8] Joseph J. Rotman, An introduction to Homological Algebra, Academic Press, 1979.

[9] Roger Ware, Endomorphism Rings of Projective Modules, Trans. Amer. Math. Soc. **55** (1971), 233–256.

Hyundai Apartment 203-1403 Wolyoung-dong 705-2 Masan 631-250, Korea

E-mail: soon474@hotmail.com